• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The electrification of Florida thunderstorms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720623_sip1_m.pdf
    Size:
    2.729Mb
    Format:
    PDF
    Download
    Author
    Murphy, Martin Joseph, 1970-
    Issue Date
    1996
    Keywords
    Physics, Electricity and Magnetism.
    Physics, Atmospheric Science.
    Advisor
    Krider, E. Philip
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Six thunderstorms that occurred at the NASA Kennedy Space Center, Florida, have been studied in an attempt to characterize their electrical structure and electrification. Ground-based measurements of the cloud electric fields, the locations of lightning VHF radio sources, cloud-to-ground lightning strike points, and dual-polarization radar data were used in this study. Changes in the electric field due to lightning were used to determine the locations and magnitudes of changes in cloud charge. The fields themselves were used to compute displacement current densities following lightning flashes. The altitudes of negative charge regions were between 6.5 and 8.5 km and were almost constant. The altitude of upper positive charge exhibited more variability, and usually increased as cells developed. Amounts of charge removed by lightning increased during each cell in large storms but were nearly constant during the early part of small storms. A lower positive charge center (LPCC) usually appeared in the fields before any other charge regions could be detected at the ground. A LPCC appeared to be involved in the initiation of the majority of CG flashes. During periods of lightning, a LPCC was sometimes created by a flash, but more typically, LPCCs were produced by a cloud charge separation process. Displacement current densities were used to estimate charge accumulation rates in the cloud. The rates derived for the main negative and upper positive charge regions were compared to the average rate of charge removal by lightning. The generation rates and average lightning currents each had values ranging from 0.2 to 1.5 A and were approximately equal within expected errors in single-cell storms. Once the storm was multicellular, however, the lightning current was larger than the cloud charging rate, possibly because lightning was removing residual charge from older cells. The cloud charging rates and average lightning currents were compared with the currents computed using a non-inductive ice-graupel charging mechanism and radar-derived cloud microphysical data. This mechanism provided currents that were comparable to the observed charging rates and lightning currents and appeared to be capable of producing the LPCC.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Atmospheric Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.