• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Climate change on Mars: Modeling possible glaciers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720671_sip1_c.pdf
    Size:
    9.685Mb
    Format:
    PDF
    Download
    Author
    Pedicino, Jon Richard, 1969-
    Issue Date
    1996
    Keywords
    Geology.
    Advisor
    Baker, Victor R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The purpose of this dissertation is to explore the physical possibility of ancient glacial occurrences on the surface of Mars. Furthermore, I will elucidate the nature and extent of hypothetical ice sheets by modeling the ancient glacier inferred for the Hellas region. Individually, many of the proposed glacial features can indeed be interpreted as aeolian, fluvial, or another type of feature. It is, however, the spatial and temporal association of these features, and the incongruity presented by various alternative explanations, that makes the glacial theory more complete and universal than other hypotheses. The proposed glacial system has an extent on the order of two million square kilometers. My results include profiles of the Hellas glacier. In addition, calculations of erosion rates seem to imply an approximate time scale of erosion of between 110,000 and 1,440,000 years. Taking into consideration the plausible range of geothermal flux values (32 to 72 mW/m² I have also calculated the time frames to fill the Hellas pro-glacial lake, as well as lose it to the atmosphere via evaporation and/or sublimation. The majority of these values seem to point to a glacial epoch that took place over a period of 100,000 to 500,000 years. It is suggested that, similar to the Earth, Mars has two stable climate regimes whose shift is triggered at least in part by orbital forcing parameters. The warmer climate corresponds to more of a glacial climate on the Earth, while the cooler climate resembles the cold, dry environment that exists on Mars today. There is also evidence that, geologically, these features are relatively pristine, and therefore probably relatively young. This is in comparison to a Mars generally inferred to have been warmer and wetter earlier in its history. A second climatological scenario does not even call for a drastically different climate than today, with a localized hot spot or impact providing the short-lived heat and volatiles to create a glacier. Indeed, this glacier may have been cold based for a time, or warm based due to the thickness of the overlying ice combined with the geothermal gradient.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.