• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modelling of dynamic wetting phenomena

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1340281_sip1_m.pdf
    Size:
    4.532Mb
    Format:
    PDF
    Download
    Author
    Denesuk, Matthew, 1965-
    Issue Date
    1990
    Keywords
    Chemistry, Physical.
    Engineering, Materials Science.
    Advisor
    Uhlmann, Donald R.
    Zelinski, Brian J. J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A general dynamic wetting model is presented in which surface and gravitational driving energies are balanced against energy lost through bulk viscous dissipation. Behavior is described in terms only of independently measurable quantities, with no adjustable parameters. Additionally, the model can be expressed so as to predict liquid viscosity as a function of dynamic wetting behavior. Application of the model to a lead-silicate liquid on a gold substrate demonstrate excellent agreement of the model with experiment. The general framework of the model is especially amenable to the incorporation of other physico-chemical processes which may impact dynamic wetting phenomena. Examples are given which extend the model to specific cases where substrate roughness and/or substrate dissolution are important. Additionally, the dynamic wetting model is extended to porous substrates, accounting for the effects of composite interface formation and depletion of the liquid via capillary flow.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Materials Science and Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.