Author
Narayana, Surya, 1962-Issue Date
1991Advisor
Neuts, Marcel F.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The Markovian Arrival Process (MAP) is a tractable, versatile class of Markov renewal processes which has been extensively used to model arrival (or service) processes in queues. This thesis mainly deals with the first two moment matrices of the counts for the MAP. We derive asymptotic expansions for these two moment matrices and also derive efficient and stable algorithms to compute these matrices numerically. Simpler expressions for some of the classical mathematical descriptors of the superposition of independent MAPs also are derived.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeSystems and Industrial Engineering