Show simple item record

dc.contributor.advisorLouri, Ahmeden_US
dc.contributor.authorDetofsky, Abram Maximilian
dc.creatorDetofsky, Abram Maximilianen_US
dc.date.accessioned2013-05-16T09:49:05Z
dc.date.available2013-05-16T09:49:05Z
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/10150/291970
dc.description.abstractThis thesis explores the five-space experimental implementation and monolithic adaptation of the Equality subsystem from a parallel relational database optical machine called the Multi-Wavelength Optical Content-Addressable Parallel Processor (MW-OCAPP). MW-OCAPP uses a novel polarization- and wavelength-encoding scheme to achieve an input/output-limited experimental peak bit comparison rate of 96,000/sec. Recognizing the severe diffraction-limit penalty for using a free-space optical processor with relatively long path lengths, a system based on guided-wave optics called the Equivalency Processing Parallel Photonic Integrated Circuit (EP3IC) was developed. Although algorithmically identical to MW-OCAPP's equality operation, EP3IC's peak bit comparison rate for a similarly configured machine is over six orders of magnitude faster. It achieves this substantial performance advantage by making use of integrated high-speed detectors and electro-optic modulators. This integrated circuit solution provides relatively low-power operation, fast switching speed, a compact system footprint, vibration tolerance, and a design that is highly manufacturable.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.subjectPhysics, Optics.en_US
dc.subjectComputer Science.en_US
dc.titleA multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed relational database processing: Free-space experimental implementation and monolithic adaptation based on guided-wave technologyen_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelmastersen_US
dc.identifier.proquest1398920en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.nameM.S.en_US
dc.identifier.bibrecord.b40485833en_US
refterms.dateFOA2018-07-02T09:25:43Z
html.description.abstractThis thesis explores the five-space experimental implementation and monolithic adaptation of the Equality subsystem from a parallel relational database optical machine called the Multi-Wavelength Optical Content-Addressable Parallel Processor (MW-OCAPP). MW-OCAPP uses a novel polarization- and wavelength-encoding scheme to achieve an input/output-limited experimental peak bit comparison rate of 96,000/sec. Recognizing the severe diffraction-limit penalty for using a free-space optical processor with relatively long path lengths, a system based on guided-wave optics called the Equivalency Processing Parallel Photonic Integrated Circuit (EP3IC) was developed. Although algorithmically identical to MW-OCAPP's equality operation, EP3IC's peak bit comparison rate for a similarly configured machine is over six orders of magnitude faster. It achieves this substantial performance advantage by making use of integrated high-speed detectors and electro-optic modulators. This integrated circuit solution provides relatively low-power operation, fast switching speed, a compact system footprint, vibration tolerance, and a design that is highly manufacturable.


Files in this item

Thumbnail
Name:
azu_td_1398920_sip1_m.pdf
Size:
3.633Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record