• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A method of assessing near-view scenic beauty models: A comparison of neural networks and multiple linear regression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_1387718_sip1_m.pdf
    Size:
    2.115Mb
    Format:
    PDF
    Download
    Author
    Flynn, Myles M., 1966-
    Issue Date
    1997
    Keywords
    Landscape Architecture.
    Psychology, Social.
    Agriculture, Forestry and Wildlife.
    Artificial Intelligence.
    Recreation.
    Advisor
    Gimblett, Randy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    With recent advances in artificial intelligence, new methods are being developed that provide faster, and more consistent predictions for data in complex environments. In the field of landscape assessment, where an array of physical variables effect environmental perception, natural resource managers need tools to assist them in isolating the significant predictors critical for the protection and management of these resources. Recent studies that have utilized neural networks to assist in developing predictive models of scenic beauty that have typically utilized linear regression techniques have found limited success. The goal of this research is to compare NN's with linear regression models to determine their efficiency predictive capability for assessing near view scenic beauty in the Cedar City District of the Dixie National forest (DNF). Results of this study strongly conclude that neural networks are consistently better predictors of near view scenic beauty in spruce/fir dominated forests than hierarchical linear regression models.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Renewable Natural Resources
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.