• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Theoretical Models for Blood Flow Regulation in Heterogeneous Microvascular Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12618_sip1_m.pdf
    Size:
    3.724Mb
    Format:
    PDF
    Download
    Author
    Fry, Brendan
    Issue Date
    2013
    Keywords
    capillary recruitment
    flow estimation
    microcirculation
    oxygen transport
    theoretical model
    Applied Mathematics
    blood flow
    Advisor
    Secomb, Timothy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Proper distribution of blood flow in the microcirculation is necessary to match changing oxygen demands in various tissues. How this coordination of perfusion and consumption occurs in heterogeneous microvascular networks remains incompletely understood. Theoretical models are powerful tools that can help bridge this knowledge gap by simulating a range of conditions difficult to obtain experimentally. Here, an algorithm is first developed to estimate blood flow rates in large microvascular networks. Then, a theoretical model is presented for metabolic blood flow regulation in a realistic heterogeneous network structure, derived from experimental results from hamster cremaster muscle in control and dilated states. The model is based on modulation of arteriolar diameters according to the length-tension characteristics of vascular smooth muscle. Responses of smooth muscle cell tone to myogenic, shear-dependent, and metabolic stimuli are included. Blood flow is simulated including unequal hematocrit partition at diverging vessel bifurcations. Convective and diffusive oxygen transport in the network is simulated, and oxygen-dependent metabolic signals are assumed to be conducted upstream from distal vessels to arterioles. Simulations are carried out over a range of tissue oxygen demand. With increasing demand, arterioles dilate, blood flow increases, and the numbers of flowing arterioles and capillaries, as defined by red-blood-cell flux above a small threshold value, increase. Unequal hematocrit partition at diverging bifurcations contributes to capillary recruitment and enhances tissue oxygenation. The results imply that microvessel recruitment can occur as a consequence of local control of arteriolar tone. The effectiveness of red-blood-cell-dependent and independent mechanisms for the metabolic response of local blood flow regulation is examined over a range of tissue oxygen demands. Model results suggest that although a red-blood-cell-independent mechanism is most effective in increasing flow and preventing hypoxia, the addition of a red-blood-cell-dependent mechanism leads to a higher median tissue oxygen level, indicating distinct roles for the two mechanisms. In summary, flow rates in large microvessel networks can be estimated with the proposed algorithm, and the theoretical model for flow regulation predicts a mechanism for capillary recruitment, as well as roles for red-blood-cell-dependent and independent mechanisms in the metabolic regulation of blood flow in heterogeneous microvascular networks.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.