• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Therapeutic Potential of EGFR Derived Peptides in Breast Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12606_sip1_m.pdf
    Size:
    3.120Mb
    Format:
    PDF
    Download
    Author
    Su, Hsin-Yuan
    Issue Date
    2013
    Keywords
    EGFR
    juxtamembrane domain
    MUC1
    nuclear EGFR
    peptide
    Cancer Biology
    breast cancer
    Advisor
    Schroeder, Joyce A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 15-Oct-2013
    Abstract
    The epidermal growth factor receptor (EGFR) belongs to the erbB family of receptor tyrosine kinases which consists of four members (EGFR, ErbB2, ErbB3 and ErbB4). Upon ligand binding, the EGFR is capable of dimerization with other erbB receptors and propagates signals regulating a diverse array of cellular physiologies, including cell growth, migration and survival. Dysregulation of the EGFR is important for development and progression of different types of cancers, including breast cancer. Breast cancer is the second leading cause of cancer death in women. EGFR overexpression has been observed in about 15% of all breast cancers. Moreover, in triple negative breast cancer (TNBC), which is a more aggressive type of breast cancer and lacks effective therapies, up to 50% of tumors are found to overexpress EGFR. Targeted therapy against EGFR has been used in TNBC. However, limited efficacy has been observed in TNBC due to intrinsic and acquired resistant mechanisms. In order to overcome this issue, we have developed two novel therapeutic peptides derived from the nuclear localization signal (NLS) sequence and juxtamembrane domain of EGFR and investigated their efficacy in regard to inhibiting EGFR translocation and activation in TNBC. EGFR has been found to translocate into the nucleus and nuclear EGFR can affect gene transcription, cell proliferation, stress response and DNA repair through interacting with different components in the nucleus. Importantly, these functions of nuclear EGFR correlate with cancer prognosis and therapeutic resistance. We found that an EGFR NLS-derived peptide (ENLS peptide) could inhibit activated EGFR (pY845) undergoing nuclear translocation. We also showed that this ENLS peptide sensitized breast cancer cells to AG1478 (EGFR tyrosine kinase inhibitor) treatment. The juxtamembrane domain of EGFR regulates its trafficking to the nucleus and mitochondria, interaction with calmodulin and calcium signaling, and participates in dimerization and activation of EGFR. These non-traditional kinase related functions of EGFR represent a novel target for EGFR therapy. We found that a mimetic peptide of the juxtamembrane domain of EGFR (EJ1 peptide) could effectively inhibit EGFR activation through promoting inactive dimer formation. It could also effectively kill cancer cells through processes of apoptosis and necrosis. Mechanistically, this EJ1 peptide affects membrane integrity thereby leading to calcium influx, disruption of mitochondrial membrane potential and reactive oxygen species (ROS) accumulation. Importantly, EJ1 peptide appeared to be effective in inhibition of tumor growth and metastasis in a transgenic mouse model of breast cancer and showed no observable toxicity. ErbB3, another member of the erbB family, represents an important driver of the parallel signaling pathway to EGFR as well as a key regulator of PI3K/AKT activity which is important for therapeutic resistance. ErbB3 has been shown to interact with MUC1. The interaction between MUC1 and EGFR promotes EGFR stability through recycling of receptors. We found that MUC1 expression also affected ErbB3 activity and stability through ErbB3/EGFR/MUC1 complex formation. In conclusion, we demonstrated that two EGFR-derived peptides, working through novel strategies, represent a new foundation of effective therapeutic agents to breast cancer. ErbB3/EGFR/MUC1 complex formation under MUC1 expression also represents a druggable target for ErbB3 activity and stability.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cancer Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.