• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An Updated Telemetry System for Reliable Powering In Vivo Coupled to a Tablet Computer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12754_sip1_m.pdf
    Size:
    2.592Mb
    Format:
    PDF
    Download
    Author
    Ouellette, Jacalyn Lee
    Issue Date
    2013
    Keywords
    Biomedical Engineering
    Advisor
    Szivek, John A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Accurate and reliable in vivo measurement systems for orthopedic applications will allow a better understanding of native joint loading, gait patterns, and changes during healing and tissue regeneration. Robust and reliable telemetry units with an implantable transmitter and data acquisition software are necessary to insure long-term measurements. It was the goal of this study to update the current implantable telemetry system. Updates included using a new tablet computer for increased rates of data acquisition and encasing transmitters in a new waterproof casing. Software was developed using Labview on a Windows based Acer Iconia Tab. The Labview program allowed the user to save data to a measurement file and view the data in real time. The increased processing power of the tablet resulted in an increase in data collection rates from 29Hz to 87Hz. Interfacing the tablet computer with the telemetry system required the use of a RS-232 protocol to USB adapter. The newly developed tablet computer system was also used for load measurement collection during the most recent in vivo study. In order to insure transmitter function in vivo it was necessary to characterize the factors affecting transmission in vivo and develop transmitter and power coil designs that operated reliably. In the past implantable transmitters were noted to operate properly during bench top testing, but often failed after being placed in vivo. The two factors studied that limited power transfer to the transmitters were immersion in an aqueous environment and exposure to elevated temperatures. An aqueous environment significantly decreased power transfer by 11.9% (p-value = 0.014) relative to testing on the bench top. Additionally, a temperature increase to 40°C decreased power transfer by 6.2% (p-value = 0.017) when compared to power transfer in room temperature air. A solution that restored transmitter function required encasing transmitters in a new waterproof casing. Different casing designs made of silicone and semi-solid triglycerides were developed and tested on the bench top. Two different casing designs were used during in vivo testing and implanted into test animals. One casing design insured transmission while the other separated in vivo and did not facilitate transmission.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.