• Groundwater Contamination in the Cortaro Area, Pima County, Arizona

      Schmidt, Kenneth D.; Harshbarger and Associates, Tucson, Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
      High concentrations of nitrate have been found in water samples from irrigation wells north of the Tucson Arizona sewage treatment plant. The plant, which had primary treatment prior to 1951, produced 2,800 acre-feet of effluent in 1940, 4,600 acre-feet in 1950, 16,300 acre-feet in 1960, and 33,000 acre-feet in 1970. Large amounts of treated effluent recharge the groundwater system north of the plant. Sources of nitrate contamination beside sewage effluent may be sewage lagoons, sanitary landfills, meat packing and dairy effluent, septic tanks, and agricultural runoff. Sewage effluent is considered to be the primary source of nitrate contamination in the area. Geologic and flow net analysis indicate that aquifer conditions minimize the effects of sewage effluent contamination. Chloride and nitrate migration appears to be similar in the aquifer. Large-capacity wells were sampled to reflect regional conditions, and chemical hydrographs of chloride and nitrate were analyzed. The seasonal nature of these hydrographs patterns depend on total nitrogen in sewage effluent. Management alternatives are suggested to decrease nitrate pollution by sewage effluent.
    • Role of Modern Methods of Data Analysis for Interpretation of Hydrologic Data in Arizona

      Kisiel, Chester C.; Duckstein, Lucien; Fogel, Martin M.; Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 85721; Department of Systems and Industrial Engineering | Department of Watershed Management (Arizona-Nevada Academy of Science, 1972-05-06)
      Mathematical models, requiring substantial data, of hydrologic and water resources systems are under intensive investigation. The processes of data analysis and model building are interrelated so that models may be used to forecast for scientific reasons or decision making. Examples are drawn from research on modeling aquifers, watersheds, streamflow and precipitation in Arizona. Classes of problems include model choice, parameter estimates, initial condition, input identification, forecasting, valuation, control, presence of multiple objectives, and uncertainty. Classes of data analysis include correlation methods, system identification, stationarity, independence or randomness, seasonality, event based approach, fitting of probability distributions, and analysis for runs, range and crossing levels. Time series, event based and regression methods are reviewed. The issues discussed are applied to tree-ring analyses, streamflow gaging stations, and digital modeling of small watersheds and the Tucson aquifers.