• Time-Space Effects of Openings in Arizona Forests on Snowpacks

      Ffolliott, Peter F.; School of Renewable Natural Resources, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1983-04-16)
      Forest openings affect a snowpack during both accumulation and melt phases. At any point in time, a snowpack is the integrated result of all accumulation, redistribution, and melt processes that have taken place before the time of measurement. Since snowpacks do not always have distinct accumulation and melt phases, it is difficult to determine the effect that an opening will have on a snowpack regime. This paper describes an analysis of the effects of openings in Arizona ponderosa pine forests on snowpacks in and adjacent to the openings, using readily available input variables.
    • Tucson's Needs for Central Arizona Project Storage

      Davis, Steven E.; Tucson Water, Tucson, Arizona 85726 (Arizona-Nevada Academy of Science, 1983-04-16)
      The future acceptance and utilization of Central Arizona Project water by the City of Tucson Water Utility present many complex technical, economic, institutional, and environmental problems. Since Congressional adoption of the Colorado River Basin Project Act in 1968, Tucson Water engineers have supported the concept of a large CAP raw water storage reservoir near Cat Mountain west of the City. The United States Bureau of Reclamation, in its Stage Two planning for Phase B of the Tucson Aqueduct, has identified four potential storage sites, including the Cat Mountain location, for economic and environmental evaluation in conjunction with two basic aqueduct alignments. Engineers of the municipal water utility have utilized available computer tools to develop a preferred CAP delivery location and elevation economically advantageous to water rate payers. This paper discusses the various factors associated with Tucson's projected need for CAP water storage including reliability, operational flexibility, water quality, shortage, and power management. Each of these factors will affect the degree to which the water utility can successfully assimilate Central Arizona Project water into its groundwater supply system. Although a decision regarding storage location and volume has been postponed for the present, the initial years of CAP usage by the City of Tucson will provide sufficient test to justify the decision for no storage or prove its necessity.
    • Virus Fate in Groundwater

      Gerba, Charles P.; Departments of Microbiology, and Nutrition and Food Sciences, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1983-04-16)
    • Virus Survival in Groundwater

      Yates, M. V.; Gerba, C. P.; Department of Microbiology, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1983-04-16)
    • Volatile Organic Ground Water Contamination in the Tucson Airport Super Fund Area, Tucson, Arizona

      Eberhardt, Sandra; Beilke, Pamela; Angell, James; Arizona Department of Health Services (Arizona-Nevada Academy of Science, 1983-04-16)
      The Tucson Airport Super Fund Area is currently being investigated by the Environmental Protection Agency, the Arizona Dept. of Health Services, the City of Tucson and the Arizona Dept. of Water Resources for volatile organics and heavy metal ground water contamination. The volatile organics include trichloroethylene (TCE), trichloroethane (TCA), dichloroethylene (DCE) and heavy metals, primarily chromium. The area is defined as north of Los Reales Rd. to distinguish this contamination from the US Air Force Plant No. 44 contamination south of Los Reales Rd. The investigation includes defining the hydrogeology, the extent of ground water contamination and potential contamination sources. The aquifer being contaminated is located in the Upper Santa Cruz Basin and is the principal source of domestic water for the City of Tucson. The area of concern currently contains 177 water wells; 24 of these wells are contaminated with TCE concentrations ranging from 5 ug /1 to greater than 400 ug /l. This includes 6 City of Tucson public supply wells. There are currently 6 potential contamination sources being investigated. The first phase of Super Fund will enable the State and City governments to collect and analyze data which will be used for remedial action.
    • Water Balance Calculations, Water Use Efficiency, and Aboveground Net Production

      Lane, L. J.; Stone, J. J.; USDA-ARS, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1983-04-16)
      A discrete form of the water balance equation is used to illustrate the interaction among precipitation, runoff, percolation below the root zone, bare soil evaporation, plant transpiration, and plant available soil moisture. Under rangeland conditions, water availability is often the limiting factor in plant survival and growth. Therefore, the water balance equation is used, together with soils data and water use efficiency factors, to estimate annual aboveground net primary production of perennial vegetation.
    • Water Harvesting: An Alternative Use for Retired Farmlands

      Karpiscak, Martin M.; Foster, Kennith E.; Rawles, Leslie R.; Office of Arid Lands Studies, College of Agriculture, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1983-04-16)