• Improvement of Water Quality by Air Bubbling to Eliminate Thermal Stratification in Upper Lake Mary, Arizona (Abstract)

      McGavock, E. H.; Blee, J. W. H.; Water Resources Division, U. S. Geological Survey, Flagstaff, Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
    • Probability Distributions of Snow Course Data for Central Arizona

      Carv, Lawrence E.; Beschta, Robert L.; Department of Watershed Management, University of Arizona, Tucson 85721 (Arizona-Nevada Academy of Science, 1973-05-05)
      A preliminary study of probability distributions for use on snowpack accumulation in the central Arizona highlands was made from 22 snow courses selected as having 10 or more years of available records. Due to the frequent occurrence of zero water equivalent value, application of a single continuous probability distribution is precluded. By means of two distributions, however, the snowpack water equivalent can be assessed by a binomial distribution describing the probability of snow, and a lognormal distribution describing the probability of water equivalent. The area chosen for detailed analysis is where the headwaters of many of Arizona's major river systems occur.
    • Lake Powell Research Project: Hydrologic Research

      Jacoby, Gordon C.; University of California at Los Angeles (Arizona-Nevada Academy of Science, 1973-05-05)
      The Lake Powell Research Project is investigating the effects of man's activities on the Southeastern Utah-Northeastern Arizona region. A major portion of this project is devoted to the hydrology of Lake Powell, the largest recent modification in the region. This hydrologic research is separated into the following subprojects and administrative institutions: Subprojects: Streamflow Trends, Evaporation, Bank Storage / Institution: University of California at Los Angeles. Subprojects: Sedimentation, Physical Limnology, Lake Geochemistry / Institution: Dartmouth College. The project is now concluding its first year of full-scale research effort. The UCLA subprojects are aimed at developing an overall water budget for the lake, both on an annual and long -term basis. The Streamflow_trends study indicates that the Upper Colorado River Basin (UCRB) has shifted from a few extraordinarily wet decades in the early 1900's to several relatively dry decades up to the present. Evaporation efforts so far are toward installing a data collection system capable of furnishing data for mass-transfer and energy-budget calculations. The bank-storage study indicates that bank storage constitutes a large fraction of the impounded waters. Secondary as well as primary permeability may be of major importance in bank storage. The Evaporation and Bank Storage subprojects are working in close coordination with the Bureau of Reclamation. The Sedimentation subproject has shown that the rate may be in general agreement with earlier estimates from river flow and suspended sediment data. However, the distribution is affected by sediment dams formed by slumping of canyon wall material. Physical limnology studies indicate the presence of stratifications resulting from thermal and turbidity layers causing complex movements within the lake waters. Field and laboratory efforts in lake geochemical analyses indicate that the precipitation of calcium carbonate may be the most important chemical process in changing the water quality of the lake.
    • The Use of a Computer Model to Predict Water Quality Transformations During Subsurface Movement of Oxidation Pond Effluent

      Small, G. G.; Wilson, L. G.; Water Resources Research Center (Arizona-Nevada Academy of Science, 1973-05-05)
    • The Cognitive Strawman Planning Methodology: Public Input

      Wilson, Weston W.; Gum, Russell L.; Roefs, T. G.; Department of Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
    • Invited Topical Speaker: Robert Emmet Clark, The National Water Commission Draft Report

      Clark, Robert Emmet; University of Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
    • Effects of a Wetting Agent on the Infiltration Characteristics of a Ponderosa Pine Soil

      Kaplan, Marc G.; Zwolinski, Malcolm J.; Department of Watershed Management, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1973-05-05)
      An infiltration- wetting agent study, using the wetting agent "WATER-IN", was conducted in the ponderosa pine forest type of east central Arizona. An application rate of 10 gallons of wetting agent per acre was used on bare mineral soil and on ponderosa pine litter. The infiltration rate was measured by a modified North Fork infiltrometer. It was found that "WATER-IN" significantly increased water runoff when applied to litter, but, when applied to bare mineral soil, "WATER-IN" caused a significant increase in water infiltration. The wetting agent did not significantly affect antecedent moisture, soil particle distribution, litter water holding capacity, or litter bulk density. It is presently hypothesized that the increase in water infiltration on treated bare mineral soil is due to a decrease in the average bulk density of the surface inch of soil. The increase in runoff when litter is treated is probably due to an interaction, either physical, chemical, or both, between the humus layer and "WATER-IN ", creating a hydrophobic condition where one did not exist before.
    • Use of Stock Ponds for Hydrologic Research on Southwest Rangelands

      Simanton, J. R.; Osborn, H. B.; USDA, ARS Soil, Water, and Air Sciences; Southwest Rangeland Watershed Research Center, Tucson, Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
      Five livestock watering ponds on the walnut gulch experimental watershed were instrumented to evaluate the use of these ponds as a method for comparing rainfall amounts with runoff sediment volumes. Pond drainage area, vegetative cover, soil type, percent slope, and years of record were tested. Instrumentation consisted of water level recorders, and a topographic survey of each stock pond to ascertain its storage capacity. The results to date have been insufficient to reach definite conclusions due to instrumentation and surveying problems, and because of the natural variability of thunderstorm rainfall. Since most of these problems have now been corrected, future data should yield valuable hydrologic data for semiarid rangelands by means of these instrumented stock ponds.
    • Effect of Urbanization on Runoff from Small Watersheds

      Kao, Samuel E.; Fogel, Martin M.; Resnick, Sol D.; Water Resources Research Center, The University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1973-05-05)
      Hydrologic data collected from three small urban watersheds and one rural watershed were analyzed for the purpose of investigating the effect of urbanization on runoff. A procedure developed by the Soil Conservation Service was used to explain the relationship between the amount of rainfall and runoff. It was noted that the runoff curve number, a parameter of the method, increased as the percentage of impervious area increased. Also, there was evidence that a linear relationship existed between the runoff volume and its corresponding peak rate.
    • Groundwater Geology of Fort Valley, Coconino County, Arizona

      DeWitt, Ronald H. (Arizona-Nevada Academy of Science, 1973-05-05)
      All groundwater in fort valley is presently found in perched aquifers. The regional water table in the area is estimated to lie at a depth of approximately 1750 feet. Groundwater reservoirs are perched on impermeable clay zones located at the base of alluvial units. Groundwater is also found in highly fractured volcanic zones overlaying impermeable clay zones. Perched aquifers also occur in interflow zones above either impermeable clays or unfractured volcanics. Groundwater in fort valley is the result of infiltration or runoff and from precipitation. This recharge water infiltrates the alluvium or fractured volcanic rocks until an impermeable zone is reached where it becomes perched groundwater. Greatest well yields come from these recharge aquifers; their reliability is largely dependent on precipitation and runoff. Most wells in the fort valley area supply adequate amounts of water for domestic use.
    • Calcite Precipitation in Lake Powell (Abstract)

      Reynolds, Robert C., Jr.; Department of Earth Sciences, Dartmouth College (Arizona-Nevada Academy of Science, 1973-05-05)
    • Chemical and Biological Problems in the Grand Canyon

      Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
      A survey of chemical and bacteriological water quality in the Grand Canyon was undertaken to assess possible health hazards to river travelers. The water quality of the main Colorado River channel is relatively stable with only slight increases in ionic concentration and bacteriological load with respect to distance from Lee Ferry and time over the summer season. The tributary streams show extreme temporal variability in chemical water quality and bacteriological contamination as a result of the summer rain and flood patterns in the tributary canyons. These side streams pose a definite health hazard to unwary river travelers. More extensive sampling is called for to determine the sources of this contamination and to protect the quality of the Grand Canyon experience.
    • Invited Topical Speaker: Warren Viessman, Jr., Urban Hydrology--State-of-the-Art

      Viessman, Warren, Jr.; Nebraska Water Resources Research Institute (Arizona-Nevada Academy of Science, 1973-05-05)
    • A Public Weighting of Four Societal Goals in Arizona and Oregon

      Kimball, D. B.; Gum, R. L.; Roefs, T. G.; Department of Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1973-05-05)
    • Land Treatment for Urban Waste Water Management

      Lorah, William L.; Wright, Kenneth R.; Wright Water Engineers, Inc.; Wright-McLaughlin Engineers (Arizona-Nevada Academy of Science, 1973-05-05)
    • The Significance of Logistics to Hydrology (Abstract)

      McCarthy, J. R. (Arizona-Nevada Academy of Science, 1973-05-05)
    • A Preliminary Assessment of Snowfall Interception in Arizona Ponderosa Pine Forest

      Tennyson, Larry C.; Ffolliott, Peter F.; Thorud, David S.; Department of Watershed Management, University of Arizona, Tucson 85721 (Arizona-Nevada Academy of Science, 1973-05-05)
      A preliminary assessment and ranking of the relative significance of five processes that may contribute to snow removal from ponderosa pine forest canopies was made, including wind erosion of canopy snow, snowslide from the canopy, stemflow, vapor transport from melt water, and vapor transport of canopy snow. The first three represent delayed delivery rather than net water loss. A snow load index was obtained through use of time lapse photography of the study site canopy, while incoming solar radiation and atmospheric processes were monitored. The snow load index was expressed as a ratio of forest canopy area covered with snow to the total canopy area. Results obtained over a 4-day period following a six-hour snowstorm showed that snow removal by snowslide and wind erosion was of significant importance, while vapor transport of melt water and canopy snow, stemflow, and dripping of melt water was of comparatively minor importance.
    • Public Perception of Water Quality as a Planning Tool

      Judge, R. M.; Gum, R. L.; Department of Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1973-05-05)