Hydrology and Water Resources in Arizona and the Southwest, Volume 11 (1981)

ABOUT THE COLLECTION
Proceedings of the Hydrology section of the Annual Meeting of the Arizona-Nevada Academy of Science. Full text manuscripts of work presented. Research related to water resources, water management, and hydrologic studies primarily focused regionally on southwestern US.
Volume 11. Proceedings of the 1981 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona - Nevada Academy of Science.
May 1-2, 1981, Tucson, Arizona
QUESTIONS?
Contact anashydrology@gmail.com.
Recent Submissions
-
Hydrology and Water Resources in Arizona and the Southwest, Volume 11 (1981)Arizona-Nevada Academy of Science, 1981-05-02
-
The Alternatives and Impacts Associated with a Future Water Source Transition for Tucson WaterAnticipating a surge in the future growth of the Tucson urban area accompanied by a need for the preservation of the local groundwater resource, Tucson Water is planning for a major transition in its source of supply during the next fifty years. The completion of the Central Arizona Project to the Tucson area represents the primary ingredient to the formulation of a future water supply plan for the community. Tucson, which presently relies totally upon groundwater for its potable water supply, is diligently preparing to accept its first surface water source. The task of planning for this event is extremely complex and is further hampered by the fact that many critical factors relating to the Tucson Division of the Central Arizona Project are yet undefined. Tucson Water engineers utilize contemporary computerized hydraulic models as tools to define an array of technical solutions to the problem of accomplishing a major conversion from a multi-point system source to a predominantly single source of supply. Elements such as construction, operation, and maintenance costs associated with water treatment and delivery systems are addressed.
-
Ranking Alternative Plans for the Santa Cruz River Basin by Q-AnalysisThis paper introduces an intuitive, multicriterion decision making aid utilizing Q-analysis, a technique based in algebraic topology and set theory. This aid ranks twenty-five alternative plans for the water resource management and flood control of the Santa Cruz River Basin. These twenty -five plans have been described in terms of thirteen weighted criteria. Q-analysis is used to investigate a series of binary matrices formed over a range of threshold levels (TLs), indicating different levels at which the plans satisfy the criteria. A computer package performs both Q-analysis and slicing over the TL range. A short discussion concerning additional information that can be drawn from the multicriterion Q-analysis has also been included.
-
A Study of Salinity in Effluent Lakes, Puerto Penasco, Sonora, MexicoAn investigation of salt build -up in two saline discharge lakes was conducted during 1979 in Puerto Peñasco, Mexico. Salt water was discharged to the smaller, deeper Lake I from a shrimp aquaculture prototype at an average rate of 70 liters per second. Water flowed to Lake II through a short channel, and exited the system through either evaporation or infiltration into the underlying sandy soil. In an attempt to differentiate between the evaporation and infiltration terms in the water budget, salt-budget equations have been derived for the two-lake system. These equations have been approximated in a series of monthly time steps, using averages of weekly salinity and water level measurements. Due to imprecision in the data, meaningful results have been obtained only for Lake II. The average calculated infiltration rate is 0.015 meters per day, and calculated evaporation rates show good correspondence with pan evaporation records for a station 2 kilometers away from the lakes. Examination of the salt budget equations shows that, under steady-state conditions, the ultimate salinity is finite. Thus, the maximum expected salinity of a lake may be calculated from worst-case (summertime) values of lake volume, inflow, evaporation, and salinity of incoming water.
-
Estimations of Aquifer Characteristics Using Drillers' LogsIn an effort to utilize the lithologic information contained within the thousands of drillers' logs on file with the Arizona Department of Water Resources (DWR), a computer program was developed to analyze the logs for basic aquifer characteristics. These characteristics, estimations of specific yield, hydraulic conductivity and transmissivity, are calculated for each well log by comparing drillers' descriptions of alluvial sediments to standardized drillers' terms for which predetermined specific yield values have been assigned. These values approximate conditions in alluvial basins in Arizona. This information and identified hydrostratigraphic units are then coded for computer input. The computer program then calculates estimated aquifer characteristics for the total depth of the saturated sediments and hydrostratigraphic units. When a sufficient density of acceptable drillers' logs exist in the area being studied, the logs are used to approximate the extent and depth of the hydrostratigraphic units present. Thus the gross morphology of features, such as large clay bodies, which can have a significant effect on a hydrologic system, can be evaluated. This program has proven to be valuable by providing a preliminary overview of the geohydrologic systems of alluvial basins and for calculating initial estimates of aquifer characteristics for use in DWR computer modeling studies.