• Aspects of Aquifer Test Error Analysis

      Benbarka, Ahmed M.; Davis, Donald R.; Department of Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
      Errors in the estimation of the aquifer parameters T and S derived from aquifer test data are examined as to their cause and effects. The analysis is based on the Theis equation. The basic causes of error are in the measurements of drawdown and pumping rate, in fitting the model to the data and in violations of model assumptions. Measurement errors were studied experimentally. Curve fittings by hydrologists were compared to "automatic" curve fittings obtained by nonlinear regression. The covariance matrix of T and S obtained in this manner was used, in conjunction with sensitivity analysis, to estimate the error in prediction of future drawdown. While automatic fitting is not a perfect substitute for graphical fitting, there is a definite relation between the two methods which allows the use of the statistics developed by nonlinear regression theory to be used to study the cause, effects and risks inherent in aquifer analysis.
    • Estimations of Aquifer Characteristics Using Drillers' Logs

      Kisser, Kandy G.; Haimson, Jill S.; Arizona Department of Water Resources, Phoenix, Arizona 85004 (Arizona-Nevada Academy of Science, 1981-05-02)
      In an effort to utilize the lithologic information contained within the thousands of drillers' logs on file with the Arizona Department of Water Resources (DWR), a computer program was developed to analyze the logs for basic aquifer characteristics. These characteristics, estimations of specific yield, hydraulic conductivity and transmissivity, are calculated for each well log by comparing drillers' descriptions of alluvial sediments to standardized drillers' terms for which predetermined specific yield values have been assigned. These values approximate conditions in alluvial basins in Arizona. This information and identified hydrostratigraphic units are then coded for computer input. The computer program then calculates estimated aquifer characteristics for the total depth of the saturated sediments and hydrostratigraphic units. When a sufficient density of acceptable drillers' logs exist in the area being studied, the logs are used to approximate the extent and depth of the hydrostratigraphic units present. Thus the gross morphology of features, such as large clay bodies, which can have a significant effect on a hydrologic system, can be evaluated. This program has proven to be valuable by providing a preliminary overview of the geohydrologic systems of alluvial basins and for calculating initial estimates of aquifer characteristics for use in DWR computer modeling studies.
    • Arizona Ground-Water Reform: Forces and Consequences of Change in State Water Policy

      Marsh, Floyd L.; Hensen, Scott A.; Department of Hydrology and Water Resources, University of Arizona, 85721; Department of Political Science, University of Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • A Potential for Water-Efficient, C₄ Halophytes in Arizona's Agricultural Water Budget

      Glenn, Edward P.; O'Leary, James W.; Popkin, Barney P.; Environmental Research Laboratory, University of Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
    • Toward Development of a Groundwater Quality Protection Strategy for Arizona

      Bennett, Marc M.; Stephenson, Larry K.; Arizona Department of Health Services, Phoenix, Arizona 85007; University of Phoenix, Phoenix, Arizona 85004 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Nutrient Levels on the Verde River Watershed with Recommended Standards for P and N

      Love, Timothy D.; Arizona Department of Health Services, Phoenix, Arizona 85007 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Hydraulic Effects of Vegetation Changes Along the Santa Cruz River Channel Near Tumacacori, Arizona

      Applegate, Lee H.; U.S. Geological Survey, Tucson, Arizona 85701 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Rainwater Quality in Southeastern Arizona Rangeland

      Osborn, Herbert B.; Cooper, Loel R.; Billings, Jeff; USDA-SEA Southwest Rangeland Watershed Research Center, Tucson, Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
    • Microtrac: A Rapid Particle-Size Analyzer of Sediments and Soils

      Haverland, R. L.; Cooper, L. R.; Soils, Water and Engineering Department, University of Arizona, Tucson, Arizona; Southwest Watershed Research Center, USDA-SEA-AR, Tucson, AZ (Arizona-Nevada Academy of Science, 1981-05-02)
    • Use of Bacterial Indicators in Assessment of Water Quality of the East Verde River

      Athey, Patrick V.; Urbina, Marilyn J.; Sommerfield, Milton R.; Department of Botany and Microbiology, Arizona State University, Tempe, Arizona 85281 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Indian Water Rights: The Bureaucratic Response

      McCool, Daniel C.; Department of Political Science, University of Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Water Yield Opportunities on National Forest Lands in Arizona

      Solomon, Rhey M.; Schmidt, Larry J.; USDA Forest Service, Albuquerque, New Mexico (Arizona-Nevada Academy of Science, 1981-05-02)
      Water Yield improvement opportunities were estimated for National Forest lands in Arizona. The land base available for treatment was reduced in a stepwise manner to account for administrative, climatic, and ownership constraints. Research relationships were built upon, and then applied to the remaining land base to project water yield estimates. A continuum of management prescriptions was then displayed to show the range of opportunities. Only the chaparral, ponderosa pine, and mixed conifer types show opportunities of significance. Water yield increases can be realized principally from conversion of chaparral to grass and could add an additional 25 to 70 thousand acre-feet. The ponderosa pine zone could add an additional 15 to 30 thousand acre-feet with intensive management by reducing stocking levels on the commercial National Forest lands. Little opportunity exists within the mixed conifer zone and increases would amount to less than 10 thousand acre -feet. Annual contributions of National Forest lands are likely to range from 40 thousand to 100 thousand acre feet; this will be highly variable depending upon precipitation quantities.
    • Energy Budget Measurements Over Irrigated Alfalfa

      Gay, L. W.; Hartman, R. K.; School of Renewable Natural Resources, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Stormflow as a Function of Watershed Impervious Area

      Pankey, Jan M.; Hawkins, Richard H.; Tonto National Forest, Phoenix, Arizona 85038; College of Natural Resources, Utah State University, Logan, Utah 84322 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Hydrology and Water Resources in Arizona and the Southwest, Volume 11 (1981)

      Unknown author (Arizona-Nevada Academy of Science, 1981-05-02)
    • Hydrologic Regimes of Three Vegetations Types Across the Mogollon Rim

      Baker, Malchus B., Jr.; Rocky Mountain Forest and Range Experiment Station. Flagstaff, Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Correcting Tidal Responses in Observed Water Well Levels During Coastal Aquifer Tests

      Popkin, Barney P.; Dames & Moore, Houston, Texas 77092; Environmental Research Laboratory, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1981-05-02)
      A modified tidal efficiency algorithm, ESTA, was developed to correct observed water well levels in tidally responsive coastal areas to get best estimates of aquifer properties and well production characteristics. The algorithm was developed during groundwater studies in Puerto Peñasco, northeastern Gulf of California, Sonora, Mexico. ESTA predicts standing water well levels in response to tides. ESTA requires initial sea and well calibration data, from which sea-well relationships are calculated. It needs tidal data for the time period when projected standing water well levels are desired. The method uses a single cosine or sine function for rising or falling tides, respectively. ESTA tended to overpredict water levels, especially on rising tides, on the average of about 0.05 ft, as shown in analyses at five coastal well sites completed in low to moderately permeable sand and coquina. ESTA can be improved by application of error analysis, but this will not be necessary in most cases, as errors are generally very small for most aquifers and tidal ranges. When ESTA was applied to an aquifer test in highly permeable coral near Kahuku, northehore Oahu, Hawaii, rising -tide water well levels were overpredicted and falling -tide water well levels were underpredicted by 0.10 and 0.33 ft, respectively. Error analysis reduced these errors to 0.06 and 0.16 ft.
    • A Study of Salinity in Effluent Lakes, Puerto Penasco, Sonora, Mexico

      Dunn, Alison L.; Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
      An investigation of salt build -up in two saline discharge lakes was conducted during 1979 in Puerto Peñasco, Mexico. Salt water was discharged to the smaller, deeper Lake I from a shrimp aquaculture prototype at an average rate of 70 liters per second. Water flowed to Lake II through a short channel, and exited the system through either evaporation or infiltration into the underlying sandy soil. In an attempt to differentiate between the evaporation and infiltration terms in the water budget, salt-budget equations have been derived for the two-lake system. These equations have been approximated in a series of monthly time steps, using averages of weekly salinity and water level measurements. Due to imprecision in the data, meaningful results have been obtained only for Lake II. The average calculated infiltration rate is 0.015 meters per day, and calculated evaporation rates show good correspondence with pan evaporation records for a station 2 kilometers away from the lakes. Examination of the salt budget equations shows that, under steady-state conditions, the ultimate salinity is finite. Thus, the maximum expected salinity of a lake may be calculated from worst-case (summertime) values of lake volume, inflow, evaporation, and salinity of incoming water.
    • The Alternatives and Impacts Associated with a Future Water Source Transition for Tucson Water

      McLean, Thomas M.; Davis, Stephen E.; Tucson Water, Tucson, Arizona 85726 (Arizona-Nevada Academy of Science, 1981-05-02)
      Anticipating a surge in the future growth of the Tucson urban area accompanied by a need for the preservation of the local groundwater resource, Tucson Water is planning for a major transition in its source of supply during the next fifty years. The completion of the Central Arizona Project to the Tucson area represents the primary ingredient to the formulation of a future water supply plan for the community. Tucson, which presently relies totally upon groundwater for its potable water supply, is diligently preparing to accept its first surface water source. The task of planning for this event is extremely complex and is further hampered by the fact that many critical factors relating to the Tucson Division of the Central Arizona Project are yet undefined. Tucson Water engineers utilize contemporary computerized hydraulic models as tools to define an array of technical solutions to the problem of accomplishing a major conversion from a multi-point system source to a predominantly single source of supply. Elements such as construction, operation, and maintenance costs associated with water treatment and delivery systems are addressed.
    • Determination of Transmissivity Values in the Salt River Valley Using Recovery Tests, Specific Capacity Data and DWR Driller Log Program

      Niccoli, Mary Ann; Long, Michael R.; Arizona Department of Water Resources, Phoenix, Arizona 85004 (Arizona-Nevada Academy of Science, 1981-05-02)