• Indian Water Rights: The Bureaucratic Response

      McCool, Daniel C.; Department of Political Science, University of Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Stormflow as a Function of Watershed Impervious Area

      Pankey, Jan M.; Hawkins, Richard H.; Tonto National Forest, Phoenix, Arizona 85038; College of Natural Resources, Utah State University, Logan, Utah 84322 (Arizona-Nevada Academy of Science, 1981-05-02)
    • The Price of Water in Western Agriculture

      Wilson, David L.; Ayer, Harry W.; Natural Resource Economics Division, ERS, USDA , Salt Lake City, Utah and Tucson, Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
    • A Study of Salinity in Effluent Lakes, Puerto Penasco, Sonora, Mexico

      Dunn, Alison L.; Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
      An investigation of salt build -up in two saline discharge lakes was conducted during 1979 in Puerto Peñasco, Mexico. Salt water was discharged to the smaller, deeper Lake I from a shrimp aquaculture prototype at an average rate of 70 liters per second. Water flowed to Lake II through a short channel, and exited the system through either evaporation or infiltration into the underlying sandy soil. In an attempt to differentiate between the evaporation and infiltration terms in the water budget, salt-budget equations have been derived for the two-lake system. These equations have been approximated in a series of monthly time steps, using averages of weekly salinity and water level measurements. Due to imprecision in the data, meaningful results have been obtained only for Lake II. The average calculated infiltration rate is 0.015 meters per day, and calculated evaporation rates show good correspondence with pan evaporation records for a station 2 kilometers away from the lakes. Examination of the salt budget equations shows that, under steady-state conditions, the ultimate salinity is finite. Thus, the maximum expected salinity of a lake may be calculated from worst-case (summertime) values of lake volume, inflow, evaporation, and salinity of incoming water.
    • Candelilla/Petroleum Wax Mixtures for Treating Soils for water Harvesting

      Fink, Dwayne H.; U. S. Department of Agriculture, Science and Education Administration, U. S. Water Conservation Laboratory, Phoenix, AZ 85040 (Arizona-Nevada Academy of Science, 1981-05-02)
      A vegetable wax (candelilla), alone or in combination with petroleum waxes, was evaluated for treating soils for water harvesting. Samples were alternately weathered in a freeze -thaw cycle chamber, tested for water repellency and structural stability against water erosion, then subjected to more weathering, etc., until sample failure occurred. Soils treated with candelilla/paraffin wax mixtures were much more resistant to laboratory freeze -thaw cycle weathering than those soils treated with either of the waxes alone. Weatherability was further improved, and wax requirement reduced by (1) prior stabilization of the soil with cellulose xanthate made from chemically pulped waste paper; (2) incorporating 28 of a commercial antistripping agent into the wax; and (3) substituting a residual type petroleum wax for the paraffin in the wax mixtures.
    • Estimations of Aquifer Characteristics Using Drillers' Logs

      Kisser, Kandy G.; Haimson, Jill S.; Arizona Department of Water Resources, Phoenix, Arizona 85004 (Arizona-Nevada Academy of Science, 1981-05-02)
      In an effort to utilize the lithologic information contained within the thousands of drillers' logs on file with the Arizona Department of Water Resources (DWR), a computer program was developed to analyze the logs for basic aquifer characteristics. These characteristics, estimations of specific yield, hydraulic conductivity and transmissivity, are calculated for each well log by comparing drillers' descriptions of alluvial sediments to standardized drillers' terms for which predetermined specific yield values have been assigned. These values approximate conditions in alluvial basins in Arizona. This information and identified hydrostratigraphic units are then coded for computer input. The computer program then calculates estimated aquifer characteristics for the total depth of the saturated sediments and hydrostratigraphic units. When a sufficient density of acceptable drillers' logs exist in the area being studied, the logs are used to approximate the extent and depth of the hydrostratigraphic units present. Thus the gross morphology of features, such as large clay bodies, which can have a significant effect on a hydrologic system, can be evaluated. This program has proven to be valuable by providing a preliminary overview of the geohydrologic systems of alluvial basins and for calculating initial estimates of aquifer characteristics for use in DWR computer modeling studies.
    • Ranking Alternative Plans for the Santa Cruz River Basin by Q-Analysis

      Pfaff, Ronald T.; Duckstein, Lucien; University of Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
      This paper introduces an intuitive, multicriterion decision making aid utilizing Q-analysis, a technique based in algebraic topology and set theory. This aid ranks twenty-five alternative plans for the water resource management and flood control of the Santa Cruz River Basin. These twenty -five plans have been described in terms of thirteen weighted criteria. Q-analysis is used to investigate a series of binary matrices formed over a range of threshold levels (TLs), indicating different levels at which the plans satisfy the criteria. A computer package performs both Q-analysis and slicing over the TL range. A short discussion concerning additional information that can be drawn from the multicriterion Q-analysis has also been included.
    • Determination of Transmissivity Values in the Salt River Valley Using Recovery Tests, Specific Capacity Data and DWR Driller Log Program

      Niccoli, Mary Ann; Long, Michael R.; Arizona Department of Water Resources, Phoenix, Arizona 85004 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Microtrac: A Rapid Particle-Size Analyzer of Sediments and Soils

      Haverland, R. L.; Cooper, L. R.; Soils, Water and Engineering Department, University of Arizona, Tucson, Arizona; Southwest Watershed Research Center, USDA-SEA-AR, Tucson, AZ (Arizona-Nevada Academy of Science, 1981-05-02)
    • A Potential for Water-Efficient, C₄ Halophytes in Arizona's Agricultural Water Budget

      Glenn, Edward P.; O'Leary, James W.; Popkin, Barney P.; Environmental Research Laboratory, University of Arizona (Arizona-Nevada Academy of Science, 1981-05-02)
    • Arizona Solar Powered Pumping Project: Operating Experiences

      Larson, Dennis L.; Soils, Water and Engineering Department, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Correcting Tidal Responses in Observed Water Well Levels During Coastal Aquifer Tests

      Popkin, Barney P.; Dames & Moore, Houston, Texas 77092; Environmental Research Laboratory, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1981-05-02)
      A modified tidal efficiency algorithm, ESTA, was developed to correct observed water well levels in tidally responsive coastal areas to get best estimates of aquifer properties and well production characteristics. The algorithm was developed during groundwater studies in Puerto Peñasco, northeastern Gulf of California, Sonora, Mexico. ESTA predicts standing water well levels in response to tides. ESTA requires initial sea and well calibration data, from which sea-well relationships are calculated. It needs tidal data for the time period when projected standing water well levels are desired. The method uses a single cosine or sine function for rising or falling tides, respectively. ESTA tended to overpredict water levels, especially on rising tides, on the average of about 0.05 ft, as shown in analyses at five coastal well sites completed in low to moderately permeable sand and coquina. ESTA can be improved by application of error analysis, but this will not be necessary in most cases, as errors are generally very small for most aquifers and tidal ranges. When ESTA was applied to an aquifer test in highly permeable coral near Kahuku, northehore Oahu, Hawaii, rising -tide water well levels were overpredicted and falling -tide water well levels were underpredicted by 0.10 and 0.33 ft, respectively. Error analysis reduced these errors to 0.06 and 0.16 ft.
    • Hydrologic Regimes of Three Vegetations Types Across the Mogollon Rim

      Baker, Malchus B., Jr.; Rocky Mountain Forest and Range Experiment Station. Flagstaff, Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Energy Budget Measurements Over Irrigated Alfalfa

      Gay, L. W.; Hartman, R. K.; School of Renewable Natural Resources, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1981-05-02)
    • Some Biohydrologic Impacts of Land Imprinting

      Dixon, Robert M.; Simanton, J. Roger; USDA, SEA-AR, Tucson, Arizona 85719 (Arizona-Nevada Academy of Science, 1981-05-02)