• An Application of Multidisciplinary Water Resources Planning and Management for the San Carlos Apache Indian Reservation: Gila River Case

      Novelle, M. E.; Percious, D. J.; Wright, N. G.; Office of Arid Lands Studies, University of Arizona, Tucson, Arizona (Arizona-Nevada Academy of Science, 1977-04-16)
      The Laboratory of Native Development, Systems Analysis and Applied Technology (NADSAT) was established to provide technical assistance to southwestern Indian Tribes as an aid in the development and use of their natural resources according to their goals and objectives. NADSAT 's role is assistance and technology transfer, with an emphasis on alternative formulation and performance analysis and communicating the technological approach to tribal decision makers. The cost-effectiveness methodology provides a coherent framework and affords a mechanism for technology transfer, which makes it a useful tool in achieving tribal goals. This method was applied to the formulation of possible alternatives for use of the land and water resources of the Gila River Basin within the San Carlos Apache Indian Reservation. Criteria for devising various alternative utilization schemes are discussed, and the advantages of the cost effectiveness methodology.
    • A Utility Criterion for Real-time Reservoir Operation

      Duckstein, Lucien; Krzysztofowicz, Roman; Departments of Systems and Industrial Engineering and Hydrology & Water Resources, University of Arizona, Tucson, AZ 85721; Department of Hydrology and Water Resources, University of Arizona, Tucson 85721 (Arizona-Nevada Academy of Science, 1977-04-16)
      A dual purpose reservoir control problem can logically be modelled as a game against nature. The first purpose of the reservoir is flood control under uncertain inflow, which corresponds to short -range operation (SRO); the second purpose, which the present model imbeds into the first one, is water supply after the flood has receded, and corresponds to long-range operation (LRO). The reservoir manager makes release decisions based on his SRO risk. The trade-offs involved in his decision are described by a utility function, which is constructed within the framework of Keeney's multiattribute utility theory. The underlying assumptions appear to be quite natural for the reservoir control problem. To test the model, an experiment assessing the utility criterion of individuals has been performed; the results tend to confirm the plausibility of the approach. In particular, most individuals appear to have a risk-averse attitude for small floods and a risk-taking attitude for large ones.