• Influence of Forest Density on Bedload Movement in a Small Mountain Stream

      Heede, Burchard H.; USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Forestry Sciences Laboratory, Tempe, Arizona (Arizona-Nevada Academy of Science, 1977-04-16)
      In contrast to three ephemeral streams in the vicinity, Tony Bear Creek, a small perennial stream in the White Mountains of Arizona, showed strong relationships among parameters of hydraulic geometry. Distances between gravel bars and log steps showed an inverse relationship with gradient (r² = 0.95). Shape factor and width-depth ratio increased upstream (r² = 0.98 and 0.90, respectively), indicating depth decrease toward the headwaters. The longitudinal profile is concave, and small, infrequent channel bars suggest that sediment movement is small. In contrast to the ephemeral streams, Tony Bear Creek is thus judged to be in dynamic equilibrium. Proportion of log steps to total steps (gravel bars plus logs) was much smaller in Tony Bear Creek (about 16 %) than in five other mountain streams (about 50 %). While all other streams ran through dense forests, only 60% of Tony Bear Creek was in forest, of which 13% had been selectively cut. Thus, forest density determined the proportion of logs incorporated into the stream hydraulic system, which in turn affects bedload movement.
    • Nonpoint-Source Pollutants to Determine Runoff Source Areas

      Lane, L. J.; Norton, H. L.; Wallace, D. E.; Wilson, R. E.; Martin, R. D.; USDA, ARS, Tucson, Arizona (Arizona-Nevada Academy of Science, 1977-04-16)
      Hydrologic information is needed to understand and control water pollution from semiarid rangelands. However, the hydrologic systems under any given conditions must be understood and the effects of various land uses predicted. Based on the concept of partial area response, a runoff tracer study was conducted on two small watersheds. The watersheds were partitioned into four geomorphic subzones or hydrologic response units. Each of the four zones on both watersheds was treated with about 1 kg/ha of an individual water soluble herbicide. Runoff volumes and sources estimated using the tracers were consistent with results from simulation studies. Also, the principle of corresponding runoff and pollutant discharge rates was used to develop two methods of runoff hydrograph estimation from each of the geomorphic subzones. Method 1 matched the mean total concentration and total runoff volume. Method 2 matched the instantaneous total concentration and the instantaneous runoff rate from the entire watershed. Results from the two methods suggested that, although they may be equivalent with respect to runoff volume, Method 2 may be more consistent with respect to peak discharge.
    • A Land Imprinter for Revegetation of Barren Land Areas Through Infiltration Control

      Dixon, R. M.; Simanton, J. R.; United States Department of Agriculture, Agricultural Research Service, Western Region, Southwest Watershed Research Center, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1977-04-16)
      A new minimum tillage implement, "the land imprinter," has been designed and fabricated, and is currently being tested. Its design is based on water infiltration control theory developed during the past decade. The land imprinter was developed primarily for establishing vegetation in barren land areas in semiarid and arid regions of the world. It simultaneously forms interconnected downslope and cross - slope corrugations that shed water and then infiltrate it precisely where vegetative growth is to be encouraged. This controlled short distance routing of water along short waterways into small reservoirs makes more rainwater available for seed germination and seedling establishment, and less water available for loss by surface runoff and evaporation. The imprinter has only one moving part, in the form of a massive compound roller and central axle which turn together as a rigid assembly during operation. The compound roller consists of two imprint capsules which are linked together on the axle shaft by an axle pulling clamp. The core of the imprint capsule is a hollow steel cylinder (1-m diameter and 1-m long) fabricated from 1.27-cm steel plate. A variety of imprint geometries are formed by welding short lengths of specially -cut steel angles (1.27 cm x 15.24 cm x 15.24 cm) to the outer surface of the cylindrical core. Ten imprint capsules with distinctly different geometric patterns of steel angles have been developed and fabricated. By pairing these capsules in as many ways as possible, 45 different geometric patterns can be imprinted. The patterns of steel angles perform a number of different tillage functions including (1) brush and soft rock crushing, (2) brush and rock imbedding, (3) runoff inducing and directing, (4) infiltration inducing and directing, (5) biomass concentrating, (6) seedbed forming, (7) surface and vertical mulching, (8) wind and water erosion controlling, (9) surface compacting, and (10) surface trenching and pitting. Advantages of the land imprinter as compared with alternative tillage methods include (1) greater stability, diversity, complexity, and precision of surface geometric patterns; (2) better control of point infiltration, runoff, erosion, and evaporation; and (3) greater utility in brush -covered, steeply - sloping, deeply gullied, and rocky land. The land imprinter should have widespread utility in both range and croplands because of its unique ability to mold runoff -watered seedbeds that increase the probability of seed germination and seedling establishment.
    • Decision Making in a Multiple-use Approach to the Reclamation of Strip-mined Lands

      Goicoechea, Ambroes; Duckstein, Lucien; Fogel, Martin; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721; Departments of Systems and Industrial Engineering and Hydrology & Water Resources, University of Arizona, Tucson, AZ 85721; School of Renewable Natural Resources, The University of Arizona, Tucson, AZ 85721 (Arizona-Nevada Academy of Science, 1977-04-16)
      With the advent of ever -increasing energy needs, large-scale surface mining has gained new impetus, and there is much concern about reclaiming the mine spoils to bring about beneficial land uses. This paper presents a decision making algorithm labeled PROTRADE, and a case study of the Black Mesa region in Northern Arizona. PROTRADE considers a set of objective functions, a set of physical constraints, articulates the preferences of the decision maker in a progressive manner, and generates a set of alternative solutions. The decision maker is then able to trade level of achievement, for each objective function, against the probability of achieving that level.
    • Rehabilitation of Copper Mine Tailing Slopes Using Municipal Sewage Effluent

      Verma, Tika R.; Ludeke, Kenneth L.; Day, A. D.; School of Renewable Natural Resources, The University of Arizona, Tucson; Cyprus Pima Mining Company, Tucson; Plant Sciences, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1977-04-16)
      The suitability of treated municipal sewage effluent for the irrigation of deep- rooting plant material for the rehabilitation of copper mine tailings was studied at the Cyprus Pima Mining Company. The effectiveness of treated sewage effluent was compared with well water on the growth and survival of trees, legumes and grasses. The species studied were eucalyptus (Eucalyptus rostrata), native mesquite (Prosopis juliflora), palo verde (Cercidium floridum), desert tobacco (Nicotiana lauca) barley (Hordeum vulgare), perennial rye grass (Lolium perenne), alfalfa (Medicago sativa), and blue lupine (Lupinus augustifolius). Sprinkler and tree -well irrigation methods were used to apply the treated sewage effluent and well water to steep tailing slopes. The treated municipal sewage effluent was found to be a practical irrigation substitute for well water and a good source of plant nutrients such as nitrogen and phosphorous. Effluent produced better survival and growth than did well water with or without augmentation.
    • Reclamation of Orphaned Mine Sites and Their Effect on the Water Quality of the Lynx Creek Watershed

      Verma, Tika R.; Felix, Ernesto N.; School of Renewable Natural Resources, University of Arizona, Tucson; USDA, Forest Service, Prescott National Forest (Arizona-Nevada Academy of Science, 1977-04-16)
      Lynx Creek Watershed is located eight miles southeast of Prescott, Arizona, on the Prescott National Forest. The watershed consists of 13,600 acres, which are National Forest Lands. Approximately 600 acres in the watershed are patented mining claims. Gold was discovered in Lynx Creek in 1863 and the watershed was extensively mined for gold, silver and copper. The aftermath of the mining has resulted in numerous mine shafts, waste dumps and mill tailing ponds that were abandoned after the ore was played out. Drainage from the orphaned mine sites contribute a certain extent of toxic mineral and sediment pollution into Lynx Creek and eventually into Lynx Lake. Lynx Creek carries runoff which is slightly acidic in nature and has high concentrations of copper, manganese, iron, zinc and sulfates. The mineral pollutants have reduced the recreational and fisheries potential of the Lake. The Sheldon Mine complex consisting of a waste dump and the mill tailing dump were considered the major sources of pollutants into the Lake. The Sheldon Tailings pond was rehabilitated during the summer of 1975 and the waste dump during the summer of 1976 as part of a reclamation study that is being sponsored by SEAM (Surface Environment and Mining). The study is being conducted cooperatively by the School of Renewable Natural Resources, University of Arizona, and the Prescott National Forest. Both sites were culturally treated and dressed with lime and topsoil. Studies are currently being conducted to measure the beneficial effects of the reclamation projects.
    • Soil Erosion and Sediment Control on the Reclaimed Coal Mine Lands of the Semi-arid Southwest

      Verma, Tika R.; Thames, John L.; Mills, John E.; School of Renewable Natural Resources, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1977-04-16)
      Extensive disturbances are expected during the remainder of this century due to strip mining in the semi-arid West. Reclamation and revegetation of these disturbed areas is a slow process, primarily due to dry and harsh climatic conditions. Erosion and sediment losses are high. Monitoring of the soil erosion process is a crucial step in planning for a long lasting and stable rehabilitation of these disturbed areas. Erosion plots have been laid out to collect data for the Universal Soil Loss Equation for estimating soil loss from recontoured coal mine spoils. Effectiveness of different cultural and mechanical treatments for erosion control is also being evaluated. Since large-scale coal mining operation has just begun on the Black Mesa, preliminary data could be very effective and useful in Watershed Management planning.
    • Stochastic Prediction of Sediment Yields from Strip Mine Spoils of the Arid Southwest

      Auernhamer, Mark E.; Fogel, Martin M.; Hekman, Louis H., Jr.; Thames, John L.; School of Renewable Natural Resources, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1977-04-16)
      Mathematical simulation of the erosion process is accomplished by using a time series of hydrologic parameters as inputs into a modified form of the Universal Soil Loss Equation. A parameter to account for antecedent moisture conditions was found to improve the predictive success of the Universal Soil Loss Equation. The simulation predicts sediment yield resulting from a stochastic sequence of precipitation events on an experimental watershed. This sediment model will be used as a component in a larger, more complex hydrologic simulation model which can be used to determine optimum reclamation practices for the strip mined areas of the arid Southwest. Data from regraded strip mine spoils at the Black Mesa of Arizona are used in calibrating the model.
    • The Arizona Water Commission's Central Arizona Project Water Allocation Model System

      Briggs, Philip C.; Arizona Water Commission, Phoenix, Arizona (Arizona-Nevada Academy of Science, 1977-04-16)
      The purpose and operation of the Central Arizona Project water allocation model system are described, based on a system analysis approach developed over the past 30 years into an interdisciplinary science for the study and resolution of complex technical management problems. The system utilizes mathematical and other simulation models designed for computer operations to effectively solve such problems as the CAP faces including those concerned with social and economic considerations. The model is composed of two major components: (1) a linear program designed to determine the optimal allocation of all sources of water to all demands and, (2) a hydrologic simulator capable of reflecting the impact of distribution alternatives on per-unit cost of delivery. The model, currently being use, has substantially contributed to a greater understanding of water usage potential in Arizona.
    • An Economic Analysis of the Central Arizona Project

      Barr, James L.; Pingry, David E.; Department of Economics, University of Arizona; Division of Economic and Business Research, University of Arizona (Arizona-Nevada Academy of Science, 1977-04-16)
      An economic evaluation of the Central Arizona Project was conducted with a goal of developing a simulation model of CAP costs, water operations and capital repayment alternatives. This model was compared to the actual cost experience of the Metropolitan Water District of Southern California for a realistic assessment. In addition, an effort was made to consider some of the indirect impacts of the CAP, and the overall economic outlook was summarized. In devising the simulation model CAP capital costs, CAP power supply and CAP water supply factors were considered along with user charges, management alternatives, and operations, maintenance and repair costs.
    • Arizona Water Policy: Changing Decision Agendas and Political Styles

      Cortner, Hanna J.; Berry, Mary P.; School of Renewable Natural Resources, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1977-04-16)
      It is argued that Arizona has traditionally and persistently pursued a style of politics in which state government is a reactor rather than an initiator, and that its role has been subordinate to the federal government and local and private water users. The lack of adequate water policies has led to an inability to respond to new conditions and demands, such as conflicts among traditional water users, Indian claims, rising water costs, energy developments and environmental concerns. Past themes of administrative fragmentation and lack of concern over water and water planning have been responsible for these deficiencies. There is some evidence that the customary decision-making process is changing and the state is establishing its own water planning capability.
    • A Water Supply Data Base

      Nunamaker, J. F.; Pingry, David E.; Riley, Rex; Departments of Management Information Systems and Economics, University of Arizona, Tucson, Arizona; Electric Power Research Institute, Inc., Palo Alto, California (Arizona-Nevada Academy of Science, 1977-04-16)
      This paper describes a water supply data base being developed for the Colorado River Basin States by the University of Arizona under contract with the Electric Power Research Institute, Inc. This data base is a guide to existing natural, technical, economic, and legal water data and water data agencies in the states of Arizona, California, Colorado, Nevada, New Mexico, Utah and Wyoming.