• Nitrogen Removal from Secondary Effluent Applied to a Soil-Turf Filter

      Anderson, E. L.; Pepper, I. L.; Johnson, G. V.; Department of Soils, Water and Engineering, University of Arizona, Tucson, Arizona; Soil Testing Laboratory, Oklahoma State University, Stillwater (Arizona-Nevada Academy of Science, 1978-04-15)
      This study investigated the potential of a soil-turf filter to renovate secondary effluent applied in excess of consumptive use. Lysimeter plots were filled with a sand and a sand mix, and seeded to winter ryegrass. In spring, plots were scalped and seeded to bermudagrass. Plots were drip irrigated twice a week with secondary effluent at rates of 10, 17, 22, 34, and 43 mm/day. Leachate and effluent were analyzed for NH -N, NO,-N, and organic-N. Grass clippings were oven dried, weighed, and analyzed for organic -N. Percent of leachate available for groundwater recharge was 50% at the lowest rate and 68% at the highest rate when values were averaged for both soils. The amount of nitrogen removed by the soil-turf filter using sand was 42 to 87% and 52 to 90% on the mix, decreasing as application rate increased. The highest nitrogen removal and utilization occurred at the lowest application rate. Turf utilization of nitrogen was 10 to 28% on sand and 18 to 36% on mix, decreasing as rate of application increased. The sand-turf filter renovated 22 mm/day and the mix-turf filter renovated 43 mm/day, yielding leachate averaging less than 10 ppm NO₃-N.