• Action Programs for Water Yield Improvement on Arizona's Watersheds: Political Constrains to Implementation

      Cortner, H. J.; Berry, M. P.; School of Renewable Natural Resources, University of Arizona; Department of Forestry, University of Wisconsin (Arizona-Nevada Academy of Science, 1978-04-15)
      Although the Arizona Watershed Program 's (AWP) research efforts have had considerable success over the past 22 years in its objective to further knowledge of the feasibility of vegetative manipulation and modification as a method of increasing surface water yields, its principal sponsor and supporter, the Arizona Water Resources (AWRC), has not, to date, met with similar success. Described are three of the AWRC 's unsuccessful attempts to implement on-going action programs of vegetative management for water yield improvement: The Barr Report, the Ffolliott-Thorud Report, and the Globe Chaparral controversy, to illustrate how overstated program goals, unrealistic assumptions about the political feasibility of treatment types, extent, and intensity; failure to recognize the emergence of significant new decision-making participants, and unsettled questions concerning program costs and beneficiaries have contributed to setbacks in these programs. It is suggested that political as well as scientific constraints have accounted for reported failures in the implementation of the AWP action program objectives.
    • Analysis of Wastewater Land Treatment Systems in the Phoenix Urban Area

      Ewing, R. L.; Boyle Engineering Corporation, Phoenix Brance Office (Arizona-Nevada Academy of Science, 1978-04-15)
      As a part of the ongoing Phoenix Urban Study, Federal legislation mandates that land treatment of wastewater be seriously considered as a treatment option. Land treatment is a particularly viable alternative in the Phoenix area because in this arid desert climate, all water is a scarce and valuable resource and land treatment offers a positive opportunity for the conservation of this resource. In addition, land treatment systems are generally less expensive and have lower energy requirements than other conventional treatment processes while resulting in comparable treatment. The analysis of wastewater treatment systems for populated urban areas necessitates the preliminary investigation and comparison of a large number of alternatives to allow for a realistic engineering and economic evaluation. The site specific nature of land application adds additional variables that must be considered. A preliminary systems approach indicated that to minimize the effect of a human judgement factor between sites and yet maximize the depth of the initial analysis, computer techniques should be utilized for analysis and data storage. A summary of this analysis with appropriate cost, power usage, land requirements and other pertinent factors will be presented.
    • Arizona Groundwater Law Reform - An Urban Perspective

      Holub, H. (Arizona-Nevada Academy of Science, 1978-04-15)
      The recently- created Arizona Groundwater Management Study Commission is mandated to propose a reform of Arizona's groundwater laws. A number of issues must be addressed by this Commission in order to deal with urban problems with present groundwater law. These include: a comprehensive set of regulations on groundwater use to enhance the public interest and benefit in scarce groundwater resources; a permanent mechanism to permit transfer of water rights away from specific parcels of land; an effective system of management which considers differing types of water problems in various parts of the state; a method of quantifying existing rights and measuring use of groundwater; an extraction tax to recognize public costs associated with groundwater mining and the need for replenishment; a reevaluation of existing preferences and subsidies which encourage the mining of groundwater. Failure by Arizona to reform its groundwater laws threatens future funding for the Central Arizona Project and increases the possibility of federal intervention in state water management.
    • The Compartmented Reservoir: Efficient Water Storage in Flat Terrain Areas of Arizona

      Cluff, C. B.; Water Resources Research Center, University of Arizona (Arizona-Nevada Academy of Science, 1978-04-15)
      The compartmented reservoir is presented as an efficient method of storing water in areas of Arizona having a relatively flat terrain where there is a significant water loss through evaporation. The flat terrain makes it difficult to avoid large surface- area-to-water-volume ratios when using a conventional reservoir. Large water losses through evaporation can be reduced by compartmentalizing shallow impervious reservoirs and in flat terrain concentrating water by pumping it from one compartment to another. Concentrating the water reduces the surface-area-to-water-volume ratio to a minimum, thus decreasing evaporation losses by reducing both the temperature and exposure of the water to the atmosphere. Portable, high-capacity pumps make the method economical for small reservoirs as well as for relatively large reservoirs. Further, the amount of water available for beneficial consumption is usually more than the amount of water pumped for concentration. A Compartmented Reservoir Optimization Program (CROP-76) has been developed for selecting the optimal design configuration. The program has been utilized in designing several systems including several in Arizona. Through the use of the model, the interrelationship of the parameters have been determined. These parameters are volume, area, depth, and slope of the embankment around each compartment. These parameters interface with the parameters describing rainfall and hydrologic characteristics of the watershed. The water -yield model used in CROP-76 requires inputs of watershed area, daily precipitation and daily and maximum depletion. In addition, three sets of seasonal modifying coefficients are required either through calibration or estimated by an experienced hydrologist. The model can determine runoff from two types of watersheds, a natural and /or treated catchment. Additional inputs of CROP-76 are the surface water evaporation rate and the amount and type of consumptive use.
    • Current and Forecasted Water Consumption Patterns of Arizona Second-Home Owners

      Bond, M. E.; Dunikoski, R. H.; Bureau of Business and Economic Research (Arizona-Nevada Academy of Science, 1978-04-15)
    • Effect of Algal Growth and Dissolved Oxygen on Redox Potentials in Soil Flooded with Secondary Sewage Effluent

      Gilvert, R. G.; Rice, R. C.; U. S. Water Conservation Laboratory, Science and Education Administration-FR, U. S. Department of Agriculture, Phoenix, Arizona 85040 (Arizona-Nevada Academy of Science, 1978-04-15)
      Algal growth and oxygen evolution at the soil -water interface of soil recharge basins intermittently flooded with secondary sewage effluent (SSE) produced diurnal fluxes in dissolved oxygen (DO) in the SSE and redox potentials (Eh) in the SSE and the surface soil of the basin. The maximum daily DO-% saturation in the SSE during flooding ranged from 30 to 450 %, depending on the length of flooding and seasonal effects of temperature and solar radiation. Diurnal cycles of Eh in the SSE and the top 0 to 2 cm of soil indicated that oxygen production by algae and bacterial nitrifying and denitrifying reactions at the soil-water interface are occurring daily for limited periods during flooding and that these reactions might contribute to the net-N removal and renovation of SSE by soil filtration.
    • Effectiveness of Sealing Southeastern Arizona Stock Ponds with Soda Ash

      Osborn, H. B.; Simanton, J. R.; Koehler, R. B.; USDA, SEA-FR Southwest Rangeland Watershed Research Center, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1978-04-15)
      Pond seepage losses are a particularly serious problem in the semiarid southwest where runoff-carried calcium normally causes well-dispersed clay particles to aggregate and increase the porosity of stock pond sediments. Reported are the results of laboratory and field tests carried out by the USDA Water Conservation Laboratory in Phoenix, Arizona to determine the success of sodium carbonate (soda ash) as a soil sealant and to establish criteria for its use. Following tests two leaky ponds on Walnut Gulch, Arizona were treated with soda ash broadcast over the dry pond surfaces to the spillway elevation at a rate of 3365 Kg/ha and mixed with the pond sediment to a depth of 10 cm with a disc. Seepage losses were compared following the summer rainy season, and generally represent 20 day periods in September or October when the summer monsoon rains have ended. The late season seepage loss for the after treatment period each year from 1968 through 1974 was reduced about 50% and the treatment on one pond seems to have lasted much longer than anticipated, thus increasing the value of the treatment. A pretreatment laboratory seepage test is suggested to better determine the likelihood of treatment success.
    • Effects of Rainfall Intensity on Runoff Curve Numbers

      Hawkins, R. H.; Watershed Science Unit, Department of Forestry and Outdoor Recreation, Utah State University, Logan, Utah, 84322 (Arizona-Nevada Academy of Science, 1978-04-15)
      The runoff curve number rainfall- runoff relationships may be defined in two ways: (1) by formula, which uses total storm rainfall and a curve number, but not intensity or duration descriptors; and (2) rainfall loss accounting using a 4, rate and a specific intensity duration distribution of the function i(t) = 1.5P(5(1 +24t /T)-(1/2)-1) /T, where i(t) is the intensity at time t for a storm of duration T. Thus, the curve number method is found to be a special case of φ index loss accounting. The two methods are reconciled through the identity 1.2S = φT, leading to the relationship CN - 1200/(12 +φT). The effects of rainfall intensity on curve number are felt through deviations from the necessary causative intensity - duration curve. Some sample alternate distributions are explored and the effects on curve number shown. Limitations are discussed.
    • The Effects on Water Quality by Mining Activity in the Miami, Arizona Region

      Young, D. W.; Clark, R. B.; Arizona State Land Department, Water Rights Division, Phoenix, Arizona (Arizona-Nevada Academy of Science, 1978-04-15)
      Intensive strip and leach mining activity within a confined region usually causes environmental impacts both on the land and on water quality. Adverse water quality effects could be realized long after any mining activity has ceased due to the continuous leaching by precipitation of contaminants from spoils piles and leach dumps. The Miami, Arizona region is unique in its surface and subsurface hydrology. Two unconnected aquifers underlay the region with both serving as domestic (private and municipal) and industrial (mining) supply sources. The shallow floodplain alluvial aquifer is hydraulically connected to surface drainage from mine tailings and leach dumps. Several wells drawing from this aquifer have been abandoned as a municipal supply source due to severe water quality degradation. Water quality in these wells varies directly with precipitation indicating a correlation between surface drainage over and through tailings and leach piles. Expansion of spoils dumps into natural recharge pathways of the deeper Gila Conglomerate aquifer has raised concern that this aquifer may also be subjected to a long term influx of mine pollutants. Questions have also been raised concerning the potential effects of a proposed in situ leaching operation on the water quality of the conglomerate aquifer.
    • Ephemeral Flow and Water Quality Problems: A Case Study of the San Pedro River in Southeastern Arizona

      Keith, S. J.; Department of Hydrology and Water Resources Administration, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1978-04-15)
      Discontinuous water quality data for the San Pedro River in southeastern Arizona is analyzed to illustrate the nature of water quality problems of ephemeral flow. The San Pedro drains a northerly-trending basin of 4,483 square miles, of which 696 are in Mexico and 3,787 in Arizona. Several questions arise in the consideration of a rational management plan: what is the necessity for protection of ephemeral flow quality when the channel consists of a dry wash much of the year, where there is little aquatic or wildlife to protect, and where occasional flow during flood conditions is put to little use by humans; and where and how do we use the ephemeral flow it is indeed decided to utilize it. Such questions as these form the basis of this discussion in an effort to bring out the point that water quality problems of ephemeral flow in arid areas differ from those in the humid zone. It is argued that in between the extremes of prohibiting or treating all runoff or eliminating all sources of pollution, there is actually little that can be done to control all sources of pollution in this typical arid stream, despite the fact that standards, for the most part unattainable, have been set for this flow.
    • Geomorphic Features Affecting Transmission Loss Potential

      Wallace, D. E.; Lane, L. J.; Southwest Watershed Research Center, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1978-04-15)
      Water yield studies and flood control surveys often necessitate estimating transmission losses from ungaged watersheds. There is an immediate need for an economical method that provides the required accuracy. Analysis of relations between stream order, drainage area, and volume of channel alluvium existing in the various orders is one means of estimating loss potential. Data needed for the stream order survey are taken from aerial photos. Stream order is analyzed using stereophoto maps. Stream lengths taken from the maps are combined with average channel width and depth data (determined by prior surveys) to estimate volumes of alluvium involved. The volume of channel alluvium in a drainage network is directly related to the stream order number of its channels. Thus, a volume of alluvium within a drainage network (with a known transmission loss potential) may be estimated by knowing the order of each length of channel and the drainage areas involved. In analyzing drainage areas of 56-mi² or less, 70 to 75 percent of the total drainage network length is contained within first and second order channels; yet, these constitute less than 10 percent of the total transmission loss potential of the areas. Analysis of stream order and drainage area versus volume of alluvium relations allows preliminary estimates of transmission loss potential to be made for ungaged areas.
    • Heavy Metals & Wastewater Reuse

      Higgins, T. E.; Department of Engineering, Arizona State University, Tempe (Arizona-Nevada Academy of Science, 1978-04-15)
      Water shortages in the Western United States have intensified the search for new sources. Wastewater reuse is being increasingly called upon to augment existing supplies. One potential impediment to the continued expansion of wastewater reuse efforts is the accumulation of toxic heavy metals and other salts in the recycled water. Conventional and advanced wastewater treatment effect the removal of a portion of the heavy metals added during use. Removal is by chemical precipitation and adsorption and disposed of with the sludges. Potential uses of treated wastewater effluents include irrigation and groundwater recharge. Care must be taken to prevent contamination of groundwater, especially since existing wells have been reported to have concentrations of heavy metals in excess of drinking water standards. Percolation of wastewaters through soils (especially fine soils) results in a reduction in heavy metal concentrations. It is postulated that removal of these metals is by a combination of chemical precipitation with filtration of the precipitates, and adsorption on soil particles (thus the effectiveness of fine soils). Long term saturation of the soils with heavy metals may result in a "breakthrough" contamination of the groundwater. A predictive model of heavy metal-wastewater-soil interactions is proposed to aid in the design and regulation of wastewater reuse systems to eliminate or minimize this problem.
    • Hydrologic Factors Affecting Groundwater Management for the City of Tucson, Arizona

      Johnson, R. B.; Water and Sewer Department, City of Tucson, Arizona (Arizona-Nevada Academy of Science, 1978-04-15)
      Assessment of the basic hydrologic and geologic parameters controlling the occurrence and availability of local groundwater is one of the first steps in formulating any comprehensive water management plan. Each of several parameters must be carefully evaluated both individually and in relation to the other factors which together describe the occurrence and movement of the subsurface water resources. These evaluations are fundamental to the legal and political decision- making framework within which the Water Utility must operate for both short and long-range water management planning. Recent changes in several hydrologic parameters have been observed throughout much of the groundwater reservoir tapped by numerous users in the Tucson Basin. Accelerated water level decline rates, decreasing production capacities of existing wells, increased hydrologic interference and increased demand for water are all having an impact on our water resource. These conditions must be evaluated before basin -wide groundwater management alternatives can be implemented.
    • Land Treatment for Primary Sewage Effluent: Water and Energy Conservation

      Rice, R. C.; Gilbert, R. G.; U. S. Water Conservation Laboratory, Phoenix, Arizona 85040 (Arizona-Nevada Academy of Science, 1978-04-15)
      Land treatment of secondary municipal wastewater is an economical and aesthetic method of upgrading water quality, if hydrologic and geologic conditions are favorable. Costly conventional secondary treatment, which requires large quantities of electrical energy, can be bypassed by applying the primary effluent directly to the land. Soil- denitrifying bacteria use the organic carbon in the primary effluent as an energy source for biodenitrification and nitrogen removal. Laboratory and field studies indicated the quality of renovated wastewater meets standards for unrestricted irrigation and recreational uses. Considerable savings, both in capital and energy costs, can be realized by land treatment of primary effluent.
    • Legal Aspects of Urban Runoff Development

      Chudnoff, D. A.; Department of Hydrology and Water Resources, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1978-04-15)
      The relationships between the separate disciplines of hydrology and law are analysed in this study into how water law and its strictures may impose upon the development of urban runoff in the metropolitan Tucson area. Brief descriptions of the doctrine of appropriation, diffuse surface waters and developed waters are presented to illustrate the complexities of the problem of urban runoff development. It is suggested that planners must not only be aware of the legal issues involved but also must understand the philosophy and principles of water law.
    • Management Alternatives for Santa Cruz Basin Groundwater

      Foster, K. E.; Office of Arid Lands Studies, University of Arizona, Tucson, Arizona (Arizona-Nevada Academy of Science, 1978-04-15)
      Combined urban, agricultural, industrial and mining groundwater withdrawal from the Santa Cruz River Basin exceeds natural aquifer replenishment by 74,000 acre -feet annually. Four ameliorative water management alternatives are presented singly and in combination with one another. These alternatives are importing Colorado River water, exchanging treated effluent with mining and agricultural interests for groundwater, interbasin water transfer, and retiring farmlands for groundwater rights. These management philosophies are applicable to most economically emergent urban areas in arid and semiarid regions.
    • A Microroughness Meter for Evaluating Rainwater Infiltration

      Simanton, J. R.; Dixon, R. M.; McGowan, I.; United States Department of Agriculture, Science and Education Administration, Federal Research, Southwest Rangeland Watershed Research Center, Tucson, AZ 85705 (Arizona-Nevada Academy of Science, 1978-04-15)
      Described is a microroughness meter developed to obtain numerous and accurate measurements of rangeland surface microroughness and characteristics. The meter, which consists of four basic parts: (1) meter base and pin guide, (2) pin lifting support bar and lifting mechanism, (3) 100 vertically moving pins, and (4) stripchart support guide and winding mechanism, was designed to measure soil surface evaluations and characteristics of a 1m2 plot. Performance tests on multi-plot sprinkler infiltrometer studies conducted on the Santa Rita Experimental Range in southeastern Arizona indicated that the meter was accurate and relatively precise in repeating soil surface roughness measurements but was not precise in defining the theoretical characteristics of constructed surfaces. It was concluded, however, that these errors in precision were insignificant and due partly to surface geometry construction errors and that the meter is a convenient, quick, simple and accurate means of measuring surface roughness in studies requiring many plots and data points.
    • Nitrogen Removal from Secondary Effluent Applied to a Soil-Turf Filter

      Anderson, E. L.; Pepper, I. L.; Johnson, G. V.; Department of Soils, Water and Engineering, University of Arizona, Tucson, Arizona; Soil Testing Laboratory, Oklahoma State University, Stillwater (Arizona-Nevada Academy of Science, 1978-04-15)
      This study investigated the potential of a soil-turf filter to renovate secondary effluent applied in excess of consumptive use. Lysimeter plots were filled with a sand and a sand mix, and seeded to winter ryegrass. In spring, plots were scalped and seeded to bermudagrass. Plots were drip irrigated twice a week with secondary effluent at rates of 10, 17, 22, 34, and 43 mm/day. Leachate and effluent were analyzed for NH -N, NO,-N, and organic-N. Grass clippings were oven dried, weighed, and analyzed for organic -N. Percent of leachate available for groundwater recharge was 50% at the lowest rate and 68% at the highest rate when values were averaged for both soils. The amount of nitrogen removed by the soil-turf filter using sand was 42 to 87% and 52 to 90% on the mix, decreasing as application rate increased. The highest nitrogen removal and utilization occurred at the lowest application rate. Turf utilization of nitrogen was 10 to 28% on sand and 18 to 36% on mix, decreasing as rate of application increased. The sand-turf filter renovated 22 mm/day and the mix-turf filter renovated 43 mm/day, yielding leachate averaging less than 10 ppm NO₃-N.
    • Rainfall-Runoff Relationships for a Mountain Watershed in Southern Arizona

      Myhrman, M.; Cluff, C. B.; Putnam, F.; Water Resources Research Center, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1978-04-15)
      A network of rain gauges and two recorder -equipped flumes were installed near the head of Cottonwood Canyon on Mt. Hopkins in the Santa Rita Mountains pursuant to a water development study for the Smithsonian Institution's Mt. Hopkins Astrophysical Observatory. The watershed is generally characterized by steep slopes, a dense evergreen woodland cover predominated by several species of oaks, isolated bedrock exposures and talus chutes. The watershed for the lower flume site comprises about 145 acres (58.60 ha) with an elevation range from about 6775 to 8580 feet (2,065 to 2,615 m). Rainfall-runoff measurements were made during the summer and fall of 1977. A runoff efficiency of 0.56 percent was calculated for the lower-flume watershed. However, since physical evidence of surface flow was found only in side drainages receiving runoff from culverts located along the Mt. Hopkins access road, a second calculation was made, using only the total area of contributing road surface as the watershed area. This yielded a runoff efficiency of 27.0 percent. The latter value, adjusted for infiltration on the slopes below the culverts, agrees well with measured efficiencies for compacted-earth water harvesting catchments. Based on the above, recommendations were made for developing a water supply system using the access road, modified to increase its effectiveness, as a water harvesting system and having two surface reservoirs for storage. A computer model was used to test the capability of the system to meet the projected water needs of the observatory.