• A Deterministic Model for Semi-Arid Catchments

      Nnaji, S.; Davis, D. R.; Fogel, M. M. (Arizona-Nevada Academy of Science, 1974-04-20)
      Semiarid environments exhibit certain hydrologic characteristics which must be taken into consideration for the effective modeling of the behavior of catchments in these areas. Convective storms, which cause most of the runoff, occur in high intensity and short duration during the summer months and are highly localized so that only a small portion of the catchment actually contributes flow to the storm hydrograph. Also, streams in semiarid catchments are ephemeral with flow occurring only about 1 percent of the time. This study attempts to develop a simple synthetic catchment model that reflects these features of the semiarid environment and for which (1) the simplifying assumptions do not preclude the inclusion of the important components of the runoff process, and (2) parameters of the equations representing the component processes have physical interpretation and are obtainable from basin characteristics so that the model may be applicable to ungaged sites. A reductionist approach is then applied in which the entire catchment is subdivided into a finite number of meshes and the various components of the runoff phenomenon are delineated within each mesh as independent functions of the catchment. Simplified forms of the hydrodynamic equations of flow are used to route flow generated from each mesh to obtain a complete hydrograph at the outlet point.
    • Using Linear Regression in Hydrological Design

      Peterson, G. D.; Davis, D. R.; Weber, J.; Department of Systems and Industrial Engineering, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)