• A Bibliographic Information System for Water Yield Improvement Practices

      White, Linda M.; Department of Watershed Management, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)
      Effects of vegetation management on water and other renewable natural resources and amenities are subjects of a computerized reference retrieval information system operated out of the department of watershed management, university of Arizona. Although WaMIS (watershed management information system is a subsystem of the arid lands information system, it has its own unique scope. The system, which serves as a link between bibliographic material and users who need access to the information, provides a personalized bibliography for the user in his area of interest. Documents identified as relevant to the system's scope are abstracted and indexed, and references stored in a computer bank. In response to specific inquiries from users, the computer tapes are searched under indexing terms, author, and/or data, and a printout of citations (giving author, data, title, source, abstract, and indexing terms) relevant to the inquiry is sent to the user.
    • Establishing a Process Framework for Land Use Planning (invited)

      Lundeen, Lloyd J.; Watershed Systems Development and Application Unit, U. S. Forest Service, Berkeley, California (Arizona-Nevada Academy of Science, 1974-04-20)
      The operational aspects of land use planning, to be effective, must be tied to a well defined planning process. The framework for this process includes a set of main components which are important in solving land use planning problems. These components are linked together in a design related to the basic concepts of decision analysis which has been oriented to natural resource problems. Detailed description can be added to the .process framework to tailor it to a specific problem, study area, or study level. Some of the major components in the framework are an objectives and goals spectrum, problem formulation, physical characterization of the land, social and economic demands analysis, identification of management alternatives and specific activities, simulation of resource response, allocation of resources, visual quality analysis, transportation system analysis, and a data management system. This process framework is d »sinned to he dynamic, user oriented, and compatible with the type of problems encountered in land use planning.
    • Hydrologic Aspects of Land-Use Planning at Tumamoc Hill, Tucson, Arizona

      Popkin, Barney Paul; Soils, Water and Engineering Department, The University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)
      Tumamoc Hill, an 869-acre (352 ha) desert area near Tucson, Arizona, is being considered as a controlled- access environmental site. Water affects the site's geology, soils, vegetation, wildlife, and archaeology. The Hill is drained by three small watersheds. The largest is rapidly urbanizing upstream. Hydrologic aspects include potential flooding and erosion hazards. These may be reduced simply, economically, and wisely in a land-use plan. Upstream development increases storm runoff volumes, and flood peaks, and frequencies routed through the site, and threatens existing downstream urban development. Return periods of channel-overflow floods become shorter with urbanization. The region may be managed to reduce hydrologic hazards by three procedures: widen channels, install low checkdams, and vegetate drainageways. These methods will slow down runoff velocities, and increase cross -sectional area of flow and roughness coefficient. More water would also be available for vegetation and wildlife. The land-use plan should include environmental education programs. These would present important effects of water on the natural ecology, and hydrologic aspects of watershed urbanization.
    • Uncertainty in Sediment Yield from a Semi-Arid Watershed

      Smith, J. M.; Fogel, M.; Duckstein, L.; Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721; Watershed Management and Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1974-04-20)
      The paper presents a stochastic model for the prediction of sediment yield in a semi -arid watershed based on rainfall data and watershed characteristics. Uncertainty stems from each of the random variables used in the model, namely, rainfall amount, storm duration, runoff, and peak flow. Soil Conservation Service formulas are used to compute the runoff and peak flow components of the Universal Soil Loss Equation. A transformation of random variables is used to obtain the distribution function of sediment yield from the joint distribution of rainfall amount and storm duration. The model has applications in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity as well as the effects of land management on the watershed. Experimental data from the Atterbury watershed is used to calibrate the model and to evaluate uncertainties associated with our uncertain knowledge of the parameters of the joint distribution of rainfall and storm duration.