• Water Resource Alternatives for Power Generation in Arizona

      Smith, Stephen E.; DeCook, K. James; Fazzolare, Rocco A.; Nuclear Engineering, University of Arizona, Tucson; Water Resources Research Center, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)
      An examination of potential water sources for power plant cooling in Arizona is presented along with information pertinent to Arizona's future water needs relative to electrical usage growth. It has been projected that Arizona's peak electrical power demands in 1980 and 1990 will exceed that of 1970 by some 5000 megawatts and 16000 megawatts of electricity respectively. At present, the bulk of the electrical energy generated in the western states originates at hydroelectric installations. Utilization of nuclear reactors for power generation requires a larger amount of cooling water than is required for a comparable fossil-fueled plant. It is suggested that the utilization of reclaimed wastewater for cooling purposes is a viable and attractive alternative to groundwater pumpage from both economic and ecological standpoints. Savings arise from conservation of fuel normally required for well pumps, costs of well construction are not required, quantities of fresh water should be released for consumption by alternate users, and a previously unused resource would be effectively recycled.
    • Water Resources of the Inner Basin of San Francisco Volcano, Coconino County, Arizona

      Montgomery, E. L.; DeWitt, R. H.; Northern Arizona University; City of Flagstaff Water Department (Arizona-Nevada Academy of Science, 1974-04-20)
      The inner basin is a collapse and erosional feature in San Francisco Mountain, an extinct volcano of late Cenozoic age, which lies approximately eight miles north of flagstaff, Arizona. The main aquifer's coefficient of transmissibility is approximately 14,000 gallons per day per foot and the storage coefficient was 0.08. Aquifer boundaries increased rates of drawdown of water levels in the inner basin well field. Inner basin springs which issue from perched reservoirs are not affected by pumpage of inner basin wells. Recharge is greater than the average yield from springs and wells in the basin which has an average of 8,000 acre-feet of water in storage in the principal aquifer. A large amount of water is lost from the inner basin aquifer system via leakage into underlying fractured volcanic rocks. It is believed that a part of this water could be intercepted by pumpage from a well constructed in the interior valley.
    • Water Resources Research on Forest and Rangelands in Arizona (invited)

      Hibbert, Alden R. (Arizona-Nevada Academy of Science, 1974-04-20)
      A progressive and coordinated effort is underway to provide a sound technical basis for managing water resources on forest and rangelands in the Southwest. An in-house Forest Service (USDA) research program including pilot testing and economic evaluations of multiple-use alternatives provides information necessary for this purpose. Demands for other goods and services also are increasing on these lands in the face of a burgeoning population. homeseekers, vacationers, and recreationists seek a variety of recreational. experiences that require open space and a relatively undisturbed environment. Frequently these uses conflict, and the combined pressure from too many activities can damage the environment. A new research effort has been organized in the central and southern Rocky Mountain Region to cope with these problems. Nine Western universities including Northern Arizona University, Arizona State University, and University of Arizona have joined forces with the Rocky Mountain Forest and Range Experiment Station to form the Eisenhower Consortium for Western Environmental Forestry Research. Simply stated, the consortium seeks to better our understanding of the relationships between man and his open-space environment in order that its quality might be maintained.