Quantifying catchment scale soil variability in Marshall Gulch, Santa Catalina Mountains Critical Zone Observatory
Author
Holleran, Molly E.Issue Date
2013Keywords
multivariate regressionpedology
soil weathering
spatial analysis
Soil, Water & Environmental Science
GIS
Advisor
Rasmussen, Craig
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The quantification and prediction of soil properties is fundamental to further understanding the Critical Zone (CZ). In this study we aim to quantify and predict soil properties within a forested catchment, Marshall Gulch, AZ. Input layers of soil depth (modeled), slope, Saga wetness index, remotely sensed normalized difference vegetation index (NDVI) and national agriculture imagery program (NAIP) bands 3/2 were determined to account for 95% of landscape variance and used as model predictors. Target variables including soil depth (cm), carbon (kg/m²), clay (%), Na flux (kg/m²), pH, and strain are predicted using multivariate linear step-wise regression models. Our results show strong correlations of soil properties with the drainage systems in the MG catchment. We observe deeper soils, higher clay content, higher carbon content, and more Na loss within the drainages of the catchment in contrast to the adjacent slopes and ridgelines.Type
textElectronic Thesis
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeSoil, Water and Environmental Science