Show simple item record

dc.contributor.authorSimanton, J. R.*
dc.contributor.authorOsborn, H. B.*
dc.date.accessioned2013-07-15T22:03:25Z
dc.date.available2013-07-15T22:03:25Z
dc.date.issued1983-04-16
dc.identifier.issn0272-6106
dc.identifier.urihttp://hdl.handle.net/10150/296083
dc.descriptionFrom the Proceedings of the 1983 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 16, 1983, Flagstaff, Arizonaen_US
dc.description.abstractAlmost all runoff from small rangeland watersheds in the Southwest is the result of intense thunderstorm rainfall, and the variability of this rainfall is an important runoff-influencing factor in such areas where high intensity rainfall dominates watershed hydrology. Thunderstorm runoff estimates for small rangeland watersheds can be made using a multitude of estimating techniques ranging from simple table and graph procedures to utilizing high-speed computers, and even the most sophisticated models greatly simplify the rainfall input. In this paper, the combined effects of rainfall quantity and intensity, and the rainfall energy factor, EI, in the Universal Soil Loss Equation (USLE), were analyzed, and simple procedures for estimating semiarid rangeland runoff volumes were developed. Equally good correlations with runoff volumes were found for EI, and for total storm rainfall times maximum rainfall intensities for 5, 10, and 30 minutes and the square of the maximum 60-minute rainfall.
dc.language.isoen_USen_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.rightsCopyright ©, where appropriate, is held by the author.
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.titleRunoff Estimates for Thunderstorm Rainfall on Small Rangeland Watershedsen_US
dc.typetexten_US
dc.typeProceedingsen_US
dc.contributor.departmentUSDA-ARS, Southwest Rangeland Watershed Research Center, Tucson, AZ 85705en_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
refterms.dateFOA2018-07-01T22:28:26Z
html.description.abstractAlmost all runoff from small rangeland watersheds in the Southwest is the result of intense thunderstorm rainfall, and the variability of this rainfall is an important runoff-influencing factor in such areas where high intensity rainfall dominates watershed hydrology. Thunderstorm runoff estimates for small rangeland watersheds can be made using a multitude of estimating techniques ranging from simple table and graph procedures to utilizing high-speed computers, and even the most sophisticated models greatly simplify the rainfall input. In this paper, the combined effects of rainfall quantity and intensity, and the rainfall energy factor, EI, in the Universal Soil Loss Equation (USLE), were analyzed, and simple procedures for estimating semiarid rangeland runoff volumes were developed. Equally good correlations with runoff volumes were found for EI, and for total storm rainfall times maximum rainfall intensities for 5, 10, and 30 minutes and the square of the maximum 60-minute rainfall.


Files in this item

Thumbnail
Name:
hwr_13-009-015.pdf
Size:
78.49Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record