We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorKarpiscak, Martin M.
dc.contributor.authorFoster, Kennith E.
dc.contributor.authorRawles, R. Leslie
dc.date.accessioned2013-07-15T22:45:20Z
dc.date.available2013-07-15T22:45:20Z
dc.date.issued1984-04-07
dc.identifier.issn0272-6106
dc.identifier.urihttp://hdl.handle.net/10150/296123
dc.descriptionFrom the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizonaen_US
dc.description.abstractA demonstration agrisystem located in an area receiving less than 250 mm rainfall annually has been constructed through a cooperative program between the City of Tucson and the University of Arizona. Mondell pine, aleppo pine, jojoba, grapes, eucalyptus, olives, and other crops were cultivated in a 4 ha NaC1 treated catchment system designed to concentrate rainfall on plants and channel excess water into a system of storage reservoirs. Evaporation was reduced from an 80 foot diameter above ground reservoir by means of 225,000 plastic film cans, at a cost of approximately 50 cents /ft². Data acquired from evaporation pans indicates a 50 to 70 percent reduction in evaporation of the stored water. Additionally, this research has provided data that 1) demonstrates the economic potential for agriculture of currently retired farmland, 2) investigates the feasibility of applying water harvesting method for agricultgural purposes in a semiarid region, and 3) evaluates water harvesting as an alternative to meet the ever increasing demand for water.
dc.language.isoen_USen_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.rightsCopyright ©, where appropriate, is held by the author.
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.titleA Novel Method of Evaporation Suppression in a Water Harvesting Systemen_US
dc.typetexten_US
dc.typeProceedingsen_US
dc.contributor.departmentOffice of Arid Lands Studies, College of Agriculture, University of Arizona, Tucson, Arizona 85719en_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
refterms.dateFOA2018-08-30T08:57:39Z
html.description.abstractA demonstration agrisystem located in an area receiving less than 250 mm rainfall annually has been constructed through a cooperative program between the City of Tucson and the University of Arizona. Mondell pine, aleppo pine, jojoba, grapes, eucalyptus, olives, and other crops were cultivated in a 4 ha NaC1 treated catchment system designed to concentrate rainfall on plants and channel excess water into a system of storage reservoirs. Evaporation was reduced from an 80 foot diameter above ground reservoir by means of 225,000 plastic film cans, at a cost of approximately 50 cents /ft². Data acquired from evaporation pans indicates a 50 to 70 percent reduction in evaporation of the stored water. Additionally, this research has provided data that 1) demonstrates the economic potential for agriculture of currently retired farmland, 2) investigates the feasibility of applying water harvesting method for agricultgural purposes in a semiarid region, and 3) evaluates water harvesting as an alternative to meet the ever increasing demand for water.


Files in this item

Thumbnail
Name:
hwr_14-113-120.pdf
Size:
448.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record