• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Age-Related Changes in Brain Connectivity: Alterations of the Default Mode Network

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12799_sip1_m.pdf
    Size:
    15.83Mb
    Format:
    PDF
    Download
    Author
    Bergfield, Kaitlin Louise
    Issue Date
    2013
    Keywords
    Default Mode Network
    Magnetic Resonance Imaging
    Neuroscience
    Cognition
    Advisor
    Alexander, Gene E.
    Ryan, Lee
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The default mode network (DMN) is a system of brain regions observed on functional magnetic resonance imaging (fMRI) when an individual is resting and deactivated during performance of goal-directed cognitive tasks, and is thought to be involved in self-related information processing. While differences with age have been observed in anatomical and functional connectivity, resting activity, and task-related deactivation of the DMN, age-related differences in the interaction between resting connectivity and active processing in the DMN are not well understood. In this study, the relation between functional connectivity and cognitive activation during performance of a task known to involve key DMN regions (i.e., posterior cingulate, medial frontal, medial temporal, and parietal regions) was investigated. Statistical Parametric Mapping (SPM) was performed on fMRI scans in healthy young (n=11) and older (n=19) adults to assess functional connectivity of the DMN at rest, and activation during a self-related source memory task. Older adults were then divided based on task performance into high- and low-performing groups to assess individual differences in connectivity and activation. Though both young and older adults showed robust connectivity among DMN regions, older adults showed greater connectivity between the DMN and other areas, particularly in frontal regions; this expansion was especially evident in low performers. Activation of the DMN during encoding and retrieval of self-related versus other-related information was greater in young adults than older adults. While low-performing older adults showed no differences between self- and other-related activation at retrieval, high performers engaged regions outside the DMN during other-related retrieval. These results suggest that older adults whose self-related source memory performance is similar to young adults exhibit preservation of DMN connectivity, self-related activation in the DMN which more closely resembles that of young adults, and additional recruitment of non-DMN networks to achieve higher memory performance. Aging in low performers is associated with dedifferentiation of DMN connectivity with expansion particularly into frontal regions, and reduced ability to engage the DMN or other networks in discriminating self- from non-self-related information. Further, preservation of DMN-specific functional connectivity is directly related to greater activation differences during retrieval of self-related versus non-self-related information in older adults.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Neuroscience
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.