• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of Immobilized Titanium Dioxide-Silver-Hydroxyapatite Nanoparticles and Colloidal Silver for Water Disinfection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_mr_2013_0138_sip1_m.pdf
    Size:
    1.260Mb
    Format:
    PDF
    Download
    Author
    Liang, Irene
    Issue Date
    2013
    Advisor
    Gerba, Charles P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Titanium dioxide nanoparticles combined with silver and hydroxyapatite (TiO₂-Ag-Hap) form a photocatalytic composite capable of oxidizing and mineralizing a wide spectrum of microbiological and chemical contaminants in water, while silver nanoparticles have long been employed for their antimicrobial properties. These materials were evaluated through an iterative series of experiments that evaluated microbial reduction, material formulation, method of application, surface-interface interactions, and reusability. The TiO₂ formulation was assessed as an antimicrobial film coated onto fabric and ceramic beads in three experimental designs: a gravity filtration column, a portable treatment capsule, and a static chamber. Colloidal floating Ag nanoparticles in solution were also assessed. Reduction of Escherichia coli, Klebsiella terrigena, MS2 bacteriophage, and Rotavirus was evaluated though standard culture-based methods. Significant microbial reduction was only observed in the static open pan design for the TiO₂-Ag-HAp materials. Colloidal silver was more effective and caused a 5 log reduction of K. terrigena, within 60 minutes, and a 5 and 4 log reduction of MS2 within 120 and 90 minutes respectively in initial trials. The anti-microbial properties of both materials were apparent, but further investigations are necessary to assess the potential of the materials for integration and development in water treatment technologies.
    Type
    text
    Electronic Thesis
    Degree Name
    B.S.
    Degree Level
    bachelors
    Degree Program
    Honors College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Honors Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.