• Login
    View Item 
    •   Home
    • Conference Proceedings
    • Arizona-Nevada Academy of Science
    • Hydrology and Water Resources in Arizona and the Southwest
    • Hydrology and Water Resources in Arizona and the Southwest, Volume 03 (1973)
    • View Item
    •   Home
    • Conference Proceedings
    • Arizona-Nevada Academy of Science
    • Hydrology and Water Resources in Arizona and the Southwest
    • Hydrology and Water Resources in Arizona and the Southwest, Volume 03 (1973)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chemical and Biological Problems in the Grand Canyon

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    hwr_03-063-072.pdf
    Size:
    97.73Kb
    Format:
    PDF
    Download
    Affiliation
    Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona
    Issue Date
    1973-05-05
    Keywords
    Hydrology -- Arizona.
    Water resources development -- Arizona.
    Hydrology -- Southwestern states.
    Water resources development -- Southwestern states.
    Water quality
    Biological properties
    Colorado River
    Water pollution sources
    Chemicals
    Bacteria
    Pollutants
    Tributaries
    Public health
    Sampling
    Salinity
    Sediments
    Water quality standards
    Grand Canyon National Park
    Show allShow less
    
    Metadata
    Show full item record
    Rights
    Copyright ©, where appropriate, is held by the author.
    Collection Information
    This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
    Publisher
    Arizona-Nevada Academy of Science
    Journal
    Hydrology and Water Resources in Arizona and the Southwest
    Abstract
    A survey of chemical and bacteriological water quality in the Grand Canyon was undertaken to assess possible health hazards to river travelers. The water quality of the main Colorado River channel is relatively stable with only slight increases in ionic concentration and bacteriological load with respect to distance from Lee Ferry and time over the summer season. The tributary streams show extreme temporal variability in chemical water quality and bacteriological contamination as a result of the summer rain and flood patterns in the tributary canyons. These side streams pose a definite health hazard to unwary river travelers. More extensive sampling is called for to determine the sources of this contamination and to protect the quality of the Grand Canyon experience.
    ISSN
    0272-6106
    Collections
    Hydrology and Water Resources in Arizona and the Southwest, Volume 03 (1973)

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Water Resource Alternatives for Power Generation in Arizona

      Smith, Stephen E.; DeCook, K. James; Fazzolare, Rocco A.; Nuclear Engineering, University of Arizona, Tucson; Water Resources Research Center, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)
      An examination of potential water sources for power plant cooling in Arizona is presented along with information pertinent to Arizona's future water needs relative to electrical usage growth. It has been projected that Arizona's peak electrical power demands in 1980 and 1990 will exceed that of 1970 by some 5000 megawatts and 16000 megawatts of electricity respectively. At present, the bulk of the electrical energy generated in the western states originates at hydroelectric installations. Utilization of nuclear reactors for power generation requires a larger amount of cooling water than is required for a comparable fossil-fueled plant. It is suggested that the utilization of reclaimed wastewater for cooling purposes is a viable and attractive alternative to groundwater pumpage from both economic and ecological standpoints. Savings arise from conservation of fuel normally required for well pumps, costs of well construction are not required, quantities of fresh water should be released for consumption by alternate users, and a previously unused resource would be effectively recycled.
    • Thumbnail

      A Rational Water Policy for Desert Cities

      Matlock, W. G.; Agricultural Engineering, Soils, Water and Engineering Department, University of Arizona (Arizona-Nevada Academy of Science, 1974-04-20)
      Four sources of water supply for desert cities are rainfall, runoff, groundwater, and imported water, and the potential use for each varies. The government can institute various policy changes to eliminate or reduce the imbalance between water supply and demand. Restrictions should be placed on water-use luxuries such as swimming pools, subdivision lakes, fountains, etc. Water pricing should be progressive; each unit of increased use above a reasonable minimum should be charged for at an increasing rate. Runoff from individual properties, homes, storage, and supermarkets should be minimized through the use of onsite recharge wells, and various collection methods should be initiated. A campaign to acquaint the general public with a new water policy must be inaugurated.
    • Thumbnail

      Economic Alternatives in Solving the U. S.-Mexico Colorado River Water Salinity Problem (invited)

      Martin, William E.; Arizona Agricultural Experiment Station, the University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1974-04-20)
      A proposed desalting plant is an engineering solution to the effects of a problem which could have been avoided and even now could be reduced on the farm. Water costing $125 per acre-foot will be delivered to Mexico to grow wheat, cotton, garden crops, alfalfa and safflower, of which the average value added per acre-foot was estimated at $80 for cotton and garden crops and $14 for wheat, alfalfa and safflower. The U.S. government, instead of building the desalting complex, could accomplish its purpose just as well by paying each farmer in the Yuma area, in return for the farmers reducing their drainage flow by whatever method they see fit, $114 per acre per year for the next 50 years. With proper management on the farm, the costs of managing salinity need not be high.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.