Author
Winikka, Carl C.Affiliation
Arizona Resources Information System, Department of Revenue, Phoenix, ArizonaIssue Date
1975-04-12Keywords
Hydrology -- Arizona.Water resources development -- Arizona.
Hydrology -- Southwestern states.
Water resources development -- Southwestern states.
Arizona
Natural resources
Information retrieval
Remote sensing
Research and development
Data processing
Land use
Water utilization
Land classification
Arizona resources information system
Metadata
Show full item recordRights
Copyright ©, where appropriate, is held by the author.Collection Information
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.Publisher
Arizona-Nevada Academy of ScienceAbstract
The Arizona resources information system is designed to serve on going needs of the people of Arizona through state, federal and local agencies. The various land and water environmental organizations use the resource system for their research. The aris has prepared Arizona orthopotoquads, developed early land use classification systems, and evaluated electronic data processing graphical and analytical systems and many information systems.ISSN
0272-6106Related items
Showing items related by title, author, creator and subject.
-
ADMMR Photo Archive inventoryArizona Department of Mines and Mineral Resources (Arizona Geological Survey (Tucson, AZ), 2012-10-14)
-
Uncertainty in Sediment Yield from a Semi-Arid WatershedSmith, J. M.; Fogel, M.; Duckstein, L.; Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721; Watershed Management and Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1974-04-20)The paper presents a stochastic model for the prediction of sediment yield in a semi -arid watershed based on rainfall data and watershed characteristics. Uncertainty stems from each of the random variables used in the model, namely, rainfall amount, storm duration, runoff, and peak flow. Soil Conservation Service formulas are used to compute the runoff and peak flow components of the Universal Soil Loss Equation. A transformation of random variables is used to obtain the distribution function of sediment yield from the joint distribution of rainfall amount and storm duration. The model has applications in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity as well as the effects of land management on the watershed. Experimental data from the Atterbury watershed is used to calibrate the model and to evaluate uncertainties associated with our uncertain knowledge of the parameters of the joint distribution of rainfall and storm duration.
-
Water Resources Research on Forest and Rangelands in Arizona (invited)Hibbert, Alden R. (Arizona-Nevada Academy of Science, 1974-04-20)A progressive and coordinated effort is underway to provide a sound technical basis for managing water resources on forest and rangelands in the Southwest. An in-house Forest Service (USDA) research program including pilot testing and economic evaluations of multiple-use alternatives provides information necessary for this purpose. Demands for other goods and services also are increasing on these lands in the face of a burgeoning population. homeseekers, vacationers, and recreationists seek a variety of recreational. experiences that require open space and a relatively undisturbed environment. Frequently these uses conflict, and the combined pressure from too many activities can damage the environment. A new research effort has been organized in the central and southern Rocky Mountain Region to cope with these problems. Nine Western universities including Northern Arizona University, Arizona State University, and University of Arizona have joined forces with the Rocky Mountain Forest and Range Experiment Station to form the Eisenhower Consortium for Western Environmental Forestry Research. Simply stated, the consortium seeks to better our understanding of the relationships between man and his open-space environment in order that its quality might be maintained.