Show simple item record

dc.contributor.advisorArmstrong, Neal R.en_US
dc.contributor.authorZacher, Brian James
dc.creatorZacher, Brian Jamesen_US
dc.date.accessioned2013-09-13T17:15:24Z
dc.date.available2013-09-13T17:15:24Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10150/301530
dc.description.abstractIn organic photovoltaic (OPV) devices, the outer interface structures are crucial in establishing the environment to which charge collection efficiency is keenly sensitive. These outer structures consist of both the physical electrodes and the subsequent electrode contacts formed by integrating electrodes with photoactive materials. Currently, fundamental understanding and strict control of contact effects within OPVs is insufficient. This dissertation is a compilation of this author's research devoted to understanding, modifying, characterizing, and controlling contact effects in OPVs. An overview of the role of electrodes and electrode contacts in OPVs is presented in the Introduction (Chapter 1). The following three chapters each embody a fulfilled research project focusing on a specific aspect of the roles and impacts of electrodes and contacts in OPVs. Chapter 2 presents the work of a modeling study on the impacts of electrical surface heterogeneity on OPV performance and establishes guidelines for acceptable degrees of surface electrical heterogeneity. Chapter 3 explores the use of electrochemically deposited and doped conductive polymers as interlayers for OPVs. Chapter 4 utilizes metal-insulator-semiconductor capacitor (MIS-C) structures as a unique platform for isolating the role of electrodes and contacts in facilitating deleterious non-ideal injection and transport pathways in OPVs. The Conclusion (Chapter 5) presents the author's suggestions for future studies involving electrodes and electrode contacts in OPVs.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectChemistryen_US
dc.titleThe Roles of Electrode Contacts in Organic Photovoltaicsen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberAdamowicz, Ludwiken_US
dc.contributor.committeememberMiranda, Katrina M.en_US
dc.contributor.committeememberMonti Masel, Oliver L.en_US
dc.contributor.committeememberArmstrong, Neal R.en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-07-01T13:31:45Z
html.description.abstractIn organic photovoltaic (OPV) devices, the outer interface structures are crucial in establishing the environment to which charge collection efficiency is keenly sensitive. These outer structures consist of both the physical electrodes and the subsequent electrode contacts formed by integrating electrodes with photoactive materials. Currently, fundamental understanding and strict control of contact effects within OPVs is insufficient. This dissertation is a compilation of this author's research devoted to understanding, modifying, characterizing, and controlling contact effects in OPVs. An overview of the role of electrodes and electrode contacts in OPVs is presented in the Introduction (Chapter 1). The following three chapters each embody a fulfilled research project focusing on a specific aspect of the roles and impacts of electrodes and contacts in OPVs. Chapter 2 presents the work of a modeling study on the impacts of electrical surface heterogeneity on OPV performance and establishes guidelines for acceptable degrees of surface electrical heterogeneity. Chapter 3 explores the use of electrochemically deposited and doped conductive polymers as interlayers for OPVs. Chapter 4 utilizes metal-insulator-semiconductor capacitor (MIS-C) structures as a unique platform for isolating the role of electrodes and contacts in facilitating deleterious non-ideal injection and transport pathways in OPVs. The Conclusion (Chapter 5) presents the author's suggestions for future studies involving electrodes and electrode contacts in OPVs.


Files in this item

Thumbnail
Name:
azu_etd_12868_sip1_m.pdf
Size:
5.815Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record