• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Capillary Electrophoresis and Capillary Liquid Chromatography for Analysis of Neurological and Neuroendocrine Signaling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12896_sip1_m.pdf
    Size:
    6.472Mb
    Format:
    PDF
    Download
    Author
    Gallagher, Elyssia Steinwinter
    Issue Date
    2013
    Keywords
    Capillary Liquid Chromatography
    Hadamard Transform
    Phospholipids
    Photolytic Optical Gating
    Chemistry
    Capillary Electrophoresis
    Advisor
    Aspinwall, Craig A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Neurological and neuroendocrine disorders result from signaling dysregulation at the molecular, cellular, and multi-cellular levels. This dissertation presents the development of separation methods, using capillary zone electrophoresis (CZE) and capillary liquid chromatography (CLC), for detecting and quantifying small molecules, peptides, and proteins involved in cellular signaling. CZE is a rapid separation technique, making it ideal for monitoring cellular dynamics with high temporal resolution. An ultraviolet - light emitting diode was used for photolytic optical gating of caged fluorophore-labeled biogenic amines, common functional groups in neurotransmitters. Additionally, a novel caged fluorophore with faster reaction kinetics than commercially available dyes was used to label reduced thiols and primary amines in the presence of o-phthalaldehyde. Together this light source and novel caged dye illustrate the utility of these methods for monitoring chemical dynamics during continuous sampling. Many cellular second messengers, including inositol phosphates, are known to exist within the cell, but their dynamics and intermolecular interactions are poorly understood since they lack chromophores or electroactive functional groups making direct detection difficult. Utilizing CZE with capacitive coupled contactless conductivity detection (C4D), biological phosphates were separated and detected based on their high anionic charge, suggesting the utility of C4D in label-free detection of biological molecules. The techniques described above require higher sensitivity to monitor physiologically relevant analyte concentrations; therefore, Hadamard transform capillary electrophoresis (HTCE) was used as a multiplexing method in which multiple separations were performed simultaneously. HTCE resulted in increased sensitivity by decreasing the random background noise. Peptides and proteins propagate signals within or between cells; yet, they are difficult to separate and detect by CZE since their highly charged surfaces result in non-specific adsorption to the capillary wall. To minimize these interactions, stable hybrid phospholipid bilayers were prepared as capillary coatings for CZE separations of cationic proteins. Additionally, stabilized phospholipid bilayer coatings were formed on silica particles through redox polymerization of synthetic, polymerizable lipids. These bilayers were stable after exposure to surfactant, organic solvents, and after storage for one month, suggesting their value as lipid chromatography stationary phases for future incorporation of transmembrane proteins to analyze binding interactions with small molecules.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.