• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Two Dimensional Finite Volume Model for Simulating Unsteady Turbulent Flow and Sediment Transport

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12903_sip1_m.pdf
    Size:
    2.431Mb
    Format:
    PDF
    Download
    Author
    Yu, Chunshui
    Issue Date
    2013
    Keywords
    Kinematic wave equation
    Sediment transport
    Shallow water equations
    Surface flow routing
    Turbulent flow
    Hydrology
    Finite volume method
    Advisor
    Duan, Jennifer
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The two-dimensional depth-averaged shallow water equations have attracted considerable attentions as a practical way to solve flows with free surface. Compared to three-dimensional Navier-Stokes equations, the shallow water equations give essentially the same results at much lower cost. Solving the shallow water equations by the Godunov-type finite volume method is a newly emerging area. The Godunov-type finite volume method is good at capturing the discontinuous fronts in numerical solutions. This makes the method suitable for solving the system of shallow water equations. In this dissertation, both the shallow water equations and the Godunov-type finite volume method are described in detail. A new surface flow routing method is proposed in the dissertation. The method does not limit the shallow water equations to open channels but extends the shallow water equations to the whole domain. Results show that the new routing method is a promising method for prediction of watershed runoff. The method is also applied to turbulence modeling of free surface flow. The κ - ε turbulence model is incorporated into the system of shallow water equations. The outcomes prove that the turbulence modeling is necessary for calculation of free surface flow. At last part of the dissertation, a total load sediment transport model is described and the model is tested against 1D and 2D laboratory experiments. In summary, the proposed numerical method shows good potential in solving free surface flow problems. And future development will be focusing on river meandering simulation, non-equilibrium sediment transport and surface flow - subsurface flow interaction.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.