• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Water Resources Research Center
    • Articles, Reports, and Other Works
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Water Resources Research Center
    • Articles, Reports, and Other Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    wrrc_198.pdf
    Size:
    3.308Mb
    Format:
    PDF
    Download
    Author
    Neuman, S. P.
    Wilson, L. G.
    Affiliation
    Department of Hydrology and Water Resources
    Water Resources Research Center
    Issue Date
    1980-03
    
    Metadata
    Show full item record
    Publisher
    University of Arizona (Tucson, AZ)
    Description
    Project Completion Report, OWRT Project No. A-07-ARIZ / Agreement No. 14-34-0001-7005, Project Dates: July 1, 1976 - September 30, 1978 / Acknowledgement: The work upon which this report is based was supported by funds provided by the State of Arizona and the United States Department of Interior, Office of Water Research and Technology, as authorized under the Water Resources Act of 1964.
    URI
    http://hdl.handle.net/10150/305430
    Abstract
    Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analyzing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so- called "free surface." A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: A mixed explicit- implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to reevaluate the conductivity (stiffness) matrix at each iteration in this highly nonlinear saturated -unsaturated flow problem. The saturated -unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated - unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration as well as the saturated hydraulic conductivity from data collected during the early transient period of the test.
    Language
    en_US
    Collections
    Articles, Reports, and Other Works

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.