• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Information Diffusion and Influence Propagation on Social Networks with Marketing Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12986_sip1_m.pdf
    Size:
    2.068Mb
    Format:
    PDF
    Download
    Author
    Cheng, Jiesi
    Issue Date
    2013
    Keywords
    Influence Propagation
    Information Diffusion
    Online Social Networks
    Recommendation Systems
    Management Information Systems
    Customer Lifetime Value
    Advisor
    Zeng, Daniel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Web and mobile technologies have had such profound impact that we have witnessed significant evolutionary changes in our social, economic and cultural activities. In recent years, online social networking sites such as Twitter, Facebook, Google+, and LinkedIn have gained immense popularity. Such social networks have led to an enormous explosion of network-centric data in a wide variety scenarios, posing unprecedented analytical and computational challenges to MIS researchers. At the same time, the availability of such data offers major research opportunities in various social computing and analytics areas to tackle interesting questions such as: - From a business and marketing perspective, how to mine the novel datasets of online user activities, interpersonal communications and interactions, for developing more successful marketing strategies? - From a system development perspective, how to incorporate massive amounts of available data to assist online users to find relevant, efficient, and timely information? In this dissertation, I explored these research opportunities by studying multiple analytics problems arose from the design and use of social networking services. The first two chapters (Chapter 2 and 3) are intended to study how social network can help to derive a better estimation of customer lifetime value (CLV), in the social gaming context. In Chapter 2, I first conducted an empirical study to demonstrate that friends' activities can serve as significant indicators of a player's CLV. Based on this observation, I proposed a perceptron-based online CLV prediction model considering both individual and friendship information. Preliminary results have shown that the model can be effectively used in online CLV prediction, by evaluating against other commonly-used benchmark methods. In Chapter 3, I further extended the metric of traditional CLV, by incorporating the personal influences on other customers' purchase as an integral part of the lifetime value. The proposed metric was illustrated and tested on seven social games of different genres. The results showed that the new metric can help marketing managers to achieve more successful marketing decisions in user acquisition, user retention, and cross promotion. Chapter 4 is devoted to the design of a recommendation system for micro-blogging. I studied the information diffusion pattern in a micro-blogging site (Twitter.com) and proposed diffusion-based metrics to assess the quality of micro-blogs, and leverage the new metric to implement a novel recommendation framework to help micro-blogging users to efficiently identify quality news feeds. Chapter 5 concludes this dissertation by highlighting major research contributions and future directions.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Management Information Systems
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.