• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12991_sip1_m.pdf
    Size:
    2.489Mb
    Format:
    PDF
    Download
    Author
    Gil, Gibin
    Issue Date
    2013
    Keywords
    Multibody system dynamics
    Numerical integration
    Singular perturbation
    Mechanical Engineering
    Dynamical systems
    Advisor
    Nikravesh, Parviz E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Computational efficiency of solving the dynamics of highly oscillatory systems is an important issue due to the requirement of small step size of explicit numerical integration algorithms. A system is considered to be highly oscillatory if it contains a fast solution that varies regularly about a slow solution. As for multibody systems, stiff force elements and contacts between bodies can make a system highly oscillatory. Standard explicit numerical integration methods should take a very small step size to satisfy the absolute stability condition for all eigenvalues of the system and the computational cost is dictated by the fast solution. In this research, a new hybrid integration scheme is proposed, in which the local linearization method is combined with a conventional integration method such as the fourth-order Runge-Kutta. In this approach, the system is partitioned into fast and slow subsystems. Then, the two subsystems are transformed into a reduced and a boundary-layer system using the singular perturbation theory. The reduced system is solved by the fourth-order Runge-Kutta method while the boundary-layer system is solved by the local linearization method. This new hybrid scheme can handle the coupling between the fast and the slow subsystems efficiently. Unlike other multi-rate or multi-method schemes, extrapolation or interpolation process is not required to deal with the coupling between subsystems. Most of the coupling effect can be accounted for by the reduced (or quasi-steady-state) system while the minor transient effect is taken into consideration by averaging. In this research, the absolute stability region for this hybrid scheme is derived and it is shown that the absolute stability region is almost independent of the fast variables. Thus, the selection of the step size is not dictated by the fast solution when a highly oscillatory system is solved, in turn, the computational efficiency can be improved. The advantage of the proposed hybrid scheme is validated through several dynamic simulations of a vehicle system including a flexible tire model. The results reveal that the hybrid scheme can reduce the computation time of the vehicle dynamic simulation significantly while attaining comparable accuracy.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mechanical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.