• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Autonomous Multi-Sensor and Web-Based Decision Support for Crop Diagnostics in Greenhouse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12998_sip1_m.pdf
    Size:
    3.643Mb
    Format:
    PDF
    Download
    Author
    Story, David Lee, Jr.
    Issue Date
    2013
    Keywords
    crop monitoring
    greenhouse
    Machine vision
    water stress
    Agricultural & Biosystems Engineering
    crop diagnostics
    Advisor
    Kacira, Murat
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An autonomous machine vision guided plant sensing and monitoring system was designed and constructed to continuously monitor plant related features: color (red-green-blue, hue-saturation-luminance, and color brightness), morphology (top projected canopy area), textural (entropy, energy, contrast, and homogeneity), Normalized Difference Vegetative Index (NDVI) (as well as other similar indices from the color and NIR channels), and thermal (plant and canopy temperature). Several experiments with repeated water stress cycles, using the machine vision system, was conducted to evaluate the machine vision system's performance to determine the timeliness of induced plant water stress detection. The study aimed at identifying significant features separating the control and treatment from an induced water stress experiment and also identifying, amongst the plant canopy, the location of the emerging water stress with the found significant features. Plant cell severity had been ranked based on the cell's accumulated feature count and converted to a color coded graphical canopy image for the remote operator to evaluate. The overall feature analysis showed that the morphological feature, Top Projected Canopy Area, was found to be a good marker for the initial growth period while the vegetation indices (ENDVI, NDVIBlue, and NDVIRed) were more capable at capturing the repeated stress occurrences during the various stages of the lettuce crop. Furthermore, the crop's canopy temperature was shown to be a significant and dominant marker to timely detect the water stress occurrences. The graphical display for the remote user showed the severity of summed features to equal the detection of the human vision. Capabilities and limitations of the developed system and stress detection methodology were documented with recommendations for future improvements for the crop monitoring/production system. An example web based decision support platform was created for data collection, storage, analysis, and display of the data/imagery collected for a remote operator.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Agricultural & Biosystems Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.