• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Doxorubicin and T Helper Lymphocytes: Unexpected Allies Against Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13028_sip1_m.pdf
    Size:
    25.86Mb
    Format:
    PDF
    Download
    Author
    Alizadeh, Darya
    Issue Date
    2013
    Keywords
    Cancer Biology
    Advisor
    Larmonier, Nicolas
    Katsanis, Emmanuel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Despite considerable progress in conventional cancer therapies, major challenges persist in the treatment of patients with advanced stage malignancies. Cancer immunotherapy (harnessing the immune system against tumors) has demonstrated limited success to date, partially due to the immunosuppressive environment generated by tumors. The mechanisms of cancer-induced immune suppression are multiple and include the promotion of immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC). MDSC expand in tumor-bearing hosts and play a central role in cancer immune evasion by inhibiting adaptive and innate immunity. Different approaches have been explored to negatively impact MDSC, each associated with specific pitfalls. In this study, we demonstrated that the anthracycline doxorubicin selectively eliminates MDSC in the spleen, blood and tumor beds. Furthermore, five days after doxorubicin treatment residual MDSC exhibited impaired suppressive function, which correlated with reduced reactive oxygen species (ROS) production, and down-regulation of arginase-1 and indoleamine 2,3-dioxygenase (IDO) expression. Of therapeutic relevance, the frequency of effector lymphocytes (CD4⁺ and CD8⁺ T cells) or natural killer cells (NK) to suppressive MDSC ratios was significantly increased following doxorubicin treatment of tumor-bearing mice. Importantly, the proportion of natural killer (NK) and cytotoxic T cells (CTL) expressing perforin and granzyme B and of CTL producing IFNγ was augmented following doxorubicin administration. The mechanism of doxorubicin-mediated elimination of MDSC was partly mediated by the increase of ROS production in MDSC at earlier time points after doxorubicin treatment. Consistently, MDSC isolated from gp91-/- mice were less sensitive to doxorubicin in vitro, and doxorubicin effects on MDSC in gp91-/- tumor-bearing mice were reduced. Of clinical significance, this drug efficiently combined with Th1 or Th17 lymphocytes to suppress tumor development and metastatic disease, resulting in better overall survival. MDSC isolated from patients with different types of cancer were also sensitive to doxorubicin-mediated cytotoxicity in vitro. Our results therefore indicate that doxorubicin may be used not only as a direct cytotoxic drug against tumor cells, but also as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering the efficacy of T cell-based immunotherapy.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cancer Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.