• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of Split-protein Systems for Interrogating Biomacromolecules

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12977_sip1_m.pdf
    Size:
    17.53Mb
    Format:
    PDF
    Download
    Author
    Shen, Shengyi
    Issue Date
    2013
    Keywords
    Poly (ADP-ribose)
    protein kinase
    Quantum Dot
    split-protein
    Chemistry
    chemically induced dimerization
    Advisor
    Ghosh, Indraneel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The specific interactions of macromolecules along with the activity of enzymes are central to all aspects of biology. It is well recognized that when the relative concentration or activity of macromolecules is perturbed, it can lead to human diseases. Thus, the development of simple methods for the detection of macromolecules and the activity of enzymes in complex environments is important for understanding biology. Moreover, the development of methods for measuring interactions allows for the testing of inhibitors that can be used as tools or drugs for improving human health. Towards this goal, a promising new method has been developed, which is the focus of this thesis, called split-protein reassembly or protein fragment complementation. In this method, a protein reporter, such as the green fluorescent protein or firefly luciferase, is dissected into two fragments, which are attached to designed adaptor proteins. The designed split-protein systems only produce a measurable signal, either fluorescence or luminescence, when a specific macromolecular interaction or activity is present. In this thesis, I have extended previous research on the direct detection of DNA using split-protein sensors utilizing a red fluorescent protein, dsRED from Discosoma that allows for multiplexed DNA detection. I have designed a new split-luciferase based sensor for detection of poly (ADP-ribose) or PAR, which plays a key role in the response to DNA damage and have applied it for monitoring the activity of poly (ADP-ribose) glycohydrolase that controls PAR levels in the cell. Furthermore, I have significantly expanded upon a three-hybrid split-luciferase system for identifying protein kinase inhibitors. I have designed and tested two orthogonal peptide based chemical inducers of dimerization based on BAD and p53mt conjugates. I have studied these chemically induced dimerization systems in detail in order to begin to provide a theoretical basis for the observed experimental results. Finally, in a less related area, I have developed methods for producing water soluble semiconductor nanoparticles called Quantum Dots (QDs), with potential application in biological imaging. I have developed methods for functionalizing the QDs with orthogonal peptides, which can be potentially used for the assembly of high affinity non-covalent QD targeted proteins.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.