• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and Characterization of Polymeric Nanoparticle Structures for Control Drug Delivery in Cancer Therapies and Temperature Effects on Drug Release

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12969_sip1_m.pdf
    Size:
    4.789Mb
    Format:
    PDF
    Download
    Author
    Lucero Acuna, Jesus Armando
    Issue Date
    2013
    Keywords
    Mathematical modeling
    Nanoparticles
    Pancreatic cancer
    PLGA
    Chemical Engineering
    Drug delivery
    Advisor
    Guzman, Roberto
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this research a variety of drug delivery systems were synthesized and characterized. For the most part, these consisted of a matrix of poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and polyvinyl alcohol (PVA) containing encapsulated anticancer drugs as chemotherapy agents. The drug release from biodegradable nanoparticles was analyzed mathematically using new approaches that simultaneously incorporates the three major mechanisms of release: initial burst, nanoparticle degradation-relaxation, and diffusion. The theoretical release studies were corroborated experimentally by evaluating the cytotoxicity effectiveness of PHT-427-loaded nanoparticles over pancreatic cancer cells in vitro. These studies showed that the encapsulated PHT-427 drug in the nanoparticles is more accessible and thus more effective when compared with the drug alone. Also, the PHT-427-loaded nanoparticles cytotoxicity was evaluated in vivo studies with pancreatic tumors. The results show that the drug is more effective when is loaded into polymeric nanoparticles compared to drug alone, by reducing orthotopic pancreatic tumor growth. In addition, a selection of hydrophobic to hydrophilic drugs were encapsulated into polymeric nanoparticles to find optimal drug loadings by using single or double emulsification techniques. The release of these drugs from PLGA nanoparticles was evaluated to determine the overall release profile characteristics. The encapsulation of the drug pemetrexed was improved by using polyethileneimine. The high positive charge density of polyethileneimine causes a strong electrostatic interaction with the carboxylic acids of pemetrexed; this complex decreases the solubility of pemetrexed and boosts the encapsulation efficiency. Additionally, a drug release mathematical analysis that considers the effects of the temperature of release was effectively established. The analysis was performed by using two different models: the first one simultaneously incorporates the mechanisms of initial burst and nanoparticle degradation - relaxation, and the second model, besides of the mechanisms of the first model, includes the diffusion of the drug. Both models were successfully employed to describe the experimental release of rhodamine 6G from PEGylated nanoparticles at different temperatures. From the parameters obtained by the fit using each model, it was possible to define a set of new relations of the form of Arrhenius to estimate the parameters of release at other temperatures.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.