• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Wavefront Analysis and Calibration for Computer Generated Holograms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13095_sip1_m.pdf
    Size:
    9.139Mb
    Format:
    PDF
    Download
    Author
    Cai, Wenrui
    Issue Date
    2013
    Keywords
    Hologram interferometry
    Optical Sciences
    Computer generated hologram
    Advisor
    Burge, James H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 09-Jun-2014
    Abstract
    Interferometry with computer generated holograms (CGH) has evolved to be a standard technology for optical testing and metrology. By controlling the phase of the diffracted light, CGHs are capable of generating reference wavefronts of any desired shape, which allows using of interferometers for measuring complex aspheric surfaces. Fabrication errors in CGHs, however, cause phase errors in the diffracted wavefront, which directly affects the accuracy and validity of the interferometric measurements. Therefore, CGH fabrication errors must be either calibrated or budgeted. This dissertation is a continuation and expansion of the analysis and calibration of the wavefront errors caused by CGH in optical testing. I will focus on two types of error: encoding error and etching variation induced errors. In Topic one, the analysis of wavefront error introduced by encoding the CGH is discussed. The fabrication of CGH by e-beam or laser writing machine specifically requires using polygon segments to approximate the continuously smooth fringe pattern of an ideal CGH. Wavefront phase errors introduced in this process depend on the size of the polygon segments and the shape of the fringes. We propose a method for estimating the wavefront error and its spatial frequency, allowing optimization of the polygon sizes for required measurement accuracy. This method is validated with both computer simulation and direct measurements from an interferometer. In Topics two, we present a new device, the Diffractive Optics Calibrator (DOC), for measuring etching parameters, such as duty-cycle and etching depth, for CGH. The system scans the CGH with a collimated laser beam, and collects the far field diffraction pattern with a CCD array. The relative intensities of the various orders of diffraction are used to fit the phase shift from etching and the duty cycle of the binary pattern. The system is capable of measuring variations that cause 1 nm peak-to-valley (P-V) phase errors. The device will be used primarily for quality control of the CGHs. DOC is also capable of generating an induced phase error map for calibration. Such calibration is essential for measuring freeform aspheric surfaces with 1 nm root-mean-square (RMS) accuracy.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.