• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Water Network Design and Management via Stochastic Programming

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13098_sip1_m.pdf
    Size:
    3.267Mb
    Format:
    PDF
    Download
    Author
    Zhang, Weini
    Issue Date
    2013
    Keywords
    Systems & Industrial Engineering
    Advisor
    Bayraksan, Guzin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Water is an essential natural resource for life and economic activities. Water resources management is facing major challenges due to increasing demands caused by population growth, increased industrial and agricultural use, and depletion of fresh water sources around the world. In addition to putting stress on our civilization, factors such as water supply availability, spatial population changes, industrial growth, etc. are all sources of major uncertainty in water resources management. There are also uncertainties regarding climate variability and how it affects both water demands and supplies. Stochastic programming is a mathematical tool to help make decisions under uncertainty that models the uncertain parameters using probability distributions and incorporates probabilistic statements in mathematical optimization. This dissertation applies stochastic programming to water resources management. In particular, we focus on reclaimed water distribution network design to effectively reuse water in a municipal system and a water allocation problem in an integrated water system under uncertainty. We first present a two-stage stochastic integer program with recourse for cost- effective reclaimed water network design. Unlike other formulations, uncertain demands, temporal, and spatial population changes are explicitly considered in our model. Selection of pipe and pump sizes are modeled using binary variables in order to linearize the nonlinear hydraulic equations and objective function terms. We then develop preprocessing methods to significantly reduce the problem dimension by exploiting the problem characteristics and network structure. We analyze the sensitivity of the network design under varying model parameters, present computational results, and discuss when the stochastic solution is most valuable. Next, we investigate the use of risk-averse approach in water resources management using the so-called conditional value-at-risk as a risk measure. We develop a multistage risk-averse stochastic program with recourse for long-term water allocation under uncertain demands and water supply variability. We propose a specialized decomposition-based algorithm to solve multistage risk-averse stochastic programs, and present both the single-cut and the multicut version of the algorithm. We then compare the solution methodologies with different ways of decomposing the resulting problem. We solve the multistage risk-averse water allocation problem with different risk aversion levels and model assumptions, present computational results to demonstrate the potential benefits of risk-averse approach, and provide a guideline for risk aversion level selection.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.