• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigation of Ionizing-Radiation-Induced Photodarkening in Rare-Earth-Doped Optical Fiber Amplifier Materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13099_sip1_m.pdf
    Size:
    5.642Mb
    Format:
    PDF
    Download
    Author
    Fox, Brian Philip
    Issue Date
    2013
    Keywords
    gamma radiation
    radiation effects
    radiation-induced photodarkening
    rare-earth-doped fibers
    space radiation
    Electrical & Computer Engineering
    fiber amplifiers
    Advisor
    Potter, Kelly S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Motivated by an increasing demand for functionality and reliability of systems operating in harsh, ionizing-radiation environments, the core of the present research is an investigation of the response of rare-earth-doped, aluminosilicate fibers to ionizing radiation. These rare-earth-doped fibers, consisting of fibers doped with ions of erbium (Er³⁺) and ytterbium (Yb³⁺) designed for use in amplifier systems, reveal average specific losses in response to ⁶⁰Co gamma radiation to be in the range of 0.0285 - 0.193 dB/(m•krad(Si)) at wavelengths from 1300 nm to 1400 nm. An ionizing dose rate dependence was identified in which high dose rates of approximately 40 rad(Si)/s invariably lead to higher induced losses than lower dose rates of approximately 14 rad(Si)/s, indicating the possibility of complex radiation-related phenomena underlying the observed absorption. Data clearly show that Er³⁺-doped fibers are more sensitive to ionizing-radiation in comparison to Yb³⁺-doped fibers, while Er³⁺/Yb³⁺ co-doped fibers are found to be the least sensitive to radiation of all the fibers examined. Evidence of color center formation associated with the dopant aluminum is found in results of visible spectroscopy conducted on gamma-irradiated preform samples and on fibers flown in low-Earth orbit. Near infrared spectroscopic data is consistent with absorption derived from this dopant as well, with the interpretation of band-tailing from the visible portion of the spectrum. Evidence of the formation of a defect intrinsic to the silicate host matrix, the Non-Bridging Oxygen Hole Center (NBOHC), is also found following ionizing radiation of the optical fiber preforms. Since the observed ionizing-radiation-induced absorption is concentrated in the visible portion of the spectrum, the performance of actively operated rare-earth-doped amplifiers is largely impacted by the pump wavelength, which is located at higher energies within the near-infrared portion of the spectrum and therefore closer to the visible portion of the spectrum than the lasing wavelength. Experimental results stemming from rare-earth-doped amplifiers operated under ionizing radiation substantiate the importance of the pumping wavelength, and suggest the presence of cascaded pump photon absorption processes. Based on these results, pumping at longer wavelengths is advised to reduce the effect of color center absorption on this crucial aspect of active fiber amplifier operation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Ionizing-Radiation-Induced Color Centers in YAG, Nd:YAG, and Cr:Nd:YAG: Developing and Analyzing a Radiation-Hard Laser Gain Medium

      Glebov, Boris L.; Potter, Kelly S.; Simmons, Joseph H.; Parks, Harold G. (The University of Arizona., 2010)
      This report presents results from a series of experiments in which YAG samples (undoped, as well as doped with Nd and Cr3+) were exposed to ionizing radiation (gamma rays and UV). These experiments were performed for the purpose of investigating the various phtodarkening processes taking place in these materials in response to the ionizing radiation. The purpose of this investigation was to establish whether and how co-doping YAG with Cr3+ improves the material's resistance to photodarkening due to the ionizing radiation. The experiments tracked time-resolved transmittance of the samples at 1064 nm in immediate response a pulsed exposure to the ionizing radiation, as well as steady-state spectrally-resolved changed in the samples' optical absorption after the irradiation. The investigation revealed a number of photodarkening processes occurring in the samples in response to the ionizing radiation, both transient and permanent. It was further revealed that inclusion of Cr3+ ions in YAG significantly reduces these photodarkening processes, improving the material's radiation resistance. It was observed that materials containing at least 0.5 at% Cr3+ are essentially radiation-hardened, resisting both transient and steady-state changes in transmittance observed in the materials not containing Cr3+.
    • Thumbnail

      The Callendar Sunshine Recorder and Some of the World-Wide Problems to Which This Instrument Can Be Applied

      Douglass, A.E.; University of Arizona (Washington, Government Printing Office, 1916-01-08)
    • Thumbnail

      Natural radiation detection using gamma ray spectrometry

      Nahas, Nicholas Michael, 1942- (The University of Arizona., 1972)
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.