• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Simulation-based Decision Support System for Electric Power Demand Management Considering Social Network Interactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13100_sip1_m.pdf
    Size:
    5.523Mb
    Format:
    PDF
    Download
    Author
    Zhao, Jiayun
    Issue Date
    2013
    Keywords
    Systems & Industrial Engineering
    Advisor
    Son, Young-Jun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A two-level agent-based modeling framework is proposed for the electric power system to solve the problems of renewable energy utilization and demand-side management. While in the detailed level of the framework the customers and utility companies are modeled as agents to represent electricity demand and supply performances, respectively, the high level reflects the aggregated performance of the considered electricity market via state space models. To connect the two levels, a social network is introduced as a dynamic medium for the interactions among customer agents. While the customers' consumption behaviors are modeled at lower level and affected by each other, their individual performances contribute to the system performance in the high level. This dissertation concerns three problems. First, the problem of renewable energy adoption concerns penetration process of distributed solar systems with various incentive policies (i.e., Income Tax Credits and Feed-in Tariff) for renewable energy. The proposed hybrid model incorporates agent-based modeling and system dynamics to simulate the solar system diffusion process among the residential customers. Second, the demand-side management problem focuses on scheduling the Plug-in Hybrid Electric Vehicles (PHEV) charging under different scenarios of demand response programs (i.e., Time-of Use and Real-time Pricing). For the Time-of Use (TOU) program, the decision-support analysis results from simulation-based optimization for both customers and the utility company. For the Real-time Pricing (RTP) program, the discussion is to find proper pricing functions according to different customers. Third, the problem concerns the agent interaction based on different architectures of social network (i.e., small-world and scale-free) and the network evolution based on triadic closure. Such interaction is applied to the first two problems with the effect of changing the customers' social connections, preferences in consumption behaviors and acceptable grid prices. Furthermore, to extend the demand-side management problem, this research also discusses the energy management at individual households integrating PV generation system, battery storage and electric vehicle under demand response programs. The conceptual model is based on the threshold method to suggest residential customers when to use the electricity from which sources (PV generation, storage, or local grid).
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.