• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Hierarchical Condition Category Model - an Improved Comorbidity Adjustment Tool for Predicting Mortality in Medicare Populations?

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13101_sip1_m.pdf
    Size:
    696.9Kb
    Format:
    PDF
    Download
    Author
    Mosley, David Glen.
    Issue Date
    2013
    Keywords
    Chronic Disease Score
    Comorbidity
    Confounding by Indication
    Elixhauser
    Hierarchical Condition Category
    Epidemiology
    Charlson Comorbidity Index
    Advisor
    Chen, Zhao
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    BACKGROUND: Morbidity, defined as disease history, is an important and well-known confounder in epidemiologic studies. Numerous methods have been developed over the last 30 years to measure morbidity via valid and reliable processes. OBJECTIVE: The goal of the current study was to evaluate, via comparative predictive validity assessment, the Centers for Medicaid and Medicare Studies Hierarchical Condition Category (CMS-HCC) comorbidity model for its ability to improve the prediction of 12-month all-cause mortality among a Medicare population compared to previously published comorbidity index models. There were three specific aims: (1) challenge the current state of risk adjustment among aged populations via an evaluation of the comparative predictive validity of one novel and four existing models to predict all-cause mortality within 12 months among a heterogeneous population of Medicare beneficiaries; (2) Investigate the comparative predictive validity of the five models to predict all-cause mortality within 12 months among two homogenous populations diagnosed with ischemic heart disease and selected cancers, including prostate cancer, lung cancer, colorectal cancer, breast cancer, pancreas cancer, and endometrial cancer; and (3) measure each comorbidity model's ability to control for a known example of confounding by indication. METHODS: A retrospective cohort design was used for all specific aims. Study 1 included 257,641 Medicare beneficiaries enrolled in three Medicare Advantage prescription drug health plans in Alabama, Florida, or Ohio in 2010 and 2011. Study 2 limited analysis to 14,260 and 66,440 beneficiaries with administrative evidence of selected cancers or ischemic heart disease in 2010, respectively. Study 3 limited analysis to the beneficiaries with ischemic heart disease. For each participant, comorbidity risk scores for the following five models were generated using administrative data from 2010: an age/sex model, the Romano adaption of the Charlson Comorbidity Index (CCI) model, the Putnam adaptation of the Chronic Disease Score Model (CDS), the CMS version of the Hierarchical Condition Category (CMS-HCC) model, and the Agency for Healthcare Research and Quality (AHRQ) adaptation of the Elixhauser model. The prospective predictive validity of the models to predict all-cause mortality during 2011 was compared via the c statistic test. Participants with ischemic heart disease were randomly allocated retrospectively to either 1) a group that had "received" a hypothetical "Drug A" in 2010 or 2) a group that had "received" a hypothetical "Drug B" in 2010. In order to evaluate the impact of confounding by indication, a weighting factor was applied to the randomization process in order to force the 33,220 participants randomized to "Drug A" to have a 2.736 times higher likelihood of having at least one acute inpatient hospitalization in 2010. Each comorbidity model's ability to control for the contrived confounding by indication was evaluated via relative risk of death. RESULTS: The CMS-HCC model had statistically significant higher c-statistic values than all four existing comorbidity indices among the heterogeneous Medicare Advantage population (N=257,641) and the homogeneous populations with breast cancer (N=4,160) and prostate cancer (N=6,594). The CMS-HCC model displayed similar performance for lung cancer (N=1,384), colorectal cancer (N=1,738), endometrial cancer (N=232), and ischemic heart disease (N=66,640) and statistically significant lower performance for pancreas cancer (N=152). The log-transformed CMS-HCC model was the only model to generate a non-significant association between exposure to "Drug A" and subsequent mortality. CONCLUSION: In general, the CMS-HCC model is the preferred comorbidity measure due to its predictive performance. However, other comorbidity models may be optimal for diseases with low prevalence and/or high mortality. Researchers should carefully and thoughtfully select a comorbidity model to assess the existence and direction of confounding. The CMS-HCC model should be log-transformed when used as a dependent variable since the score is a ratio level measurement that displays a normal distribution when log transformed. The resulting score is less likely to violate the assumptions (i.e. violations of normality) of common statistical models due to extreme values. The national availability of CMS-HCC scores for all Medicare beneficiaries provides researchers with access to a new tool to measure co-morbidity among older Americans using an empirically weighted, single score. In terms of policy, it is recommended that CMS produce CMS-HCC scores for all Medicare beneficiaries on a rolling 12 month basis for each month during the year. The availability of monthly scores would increase the ease of use of the score, as well as help facilitate more rapid adoption of the tool.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Epidemiology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.