• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatial and temporal dynamics of disturbance interactions along an ecological gradient

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13092_sip1_m.pdf
    Size:
    6.406Mb
    Format:
    PDF
    Download
    Author
    O'Connor, Christopher Daniel
    Issue Date
    2013
    Keywords
    fire suppression
    spatial reconstruction
    spruce beetle
    stability
    tree-ring
    Natural Resources
    fire severity
    Advisor
    Falk, Donald A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Interactions among site conditions, disturbance events, and climate determine the patterns of forest species recruitment and mortality across landscapes. Forests of the American Southwest have undergone significant changes over a century of altered disturbance regimes, human land uses, and changing environmental conditions. This study reconstructs the interactions between fire, spruce beetle outbreaks, climate, and anthropogenic factors and their influence on the species composition, spatial extent, and structure of four upper elevation forest types. We found that fire-climate associations changed following fire exclusion and recent high-severity fires occurred during less severe conditions than in several larger, lower severity fires in the historical record. Contemporary fires are burning with higher severity than similarly-sized historical fires, suggesting a shift toward higher-severity fire as a result of changes to forest structure and fuels over much of the upper elevation forest. In high elevation forests, the area occupied by Engelmann spruce and corkbark fir doubled in size over the four decades following fire exclusion. The increase in spruce beetle outbreak size and severity in the 20th century appears to be linked to significant expansion of host extent, accelerated growth of spruce in mixed-conifer forest, and incidence of anomalously warm summer temperatures followed by up to a decade of low precipitation. Trends toward warming, drying conditions are expected to increase the risk of future high-severity outbreaks, especially in locations of recent spruce population expansion. Forest conversion from disturbance-adapted to competition-adapted species following fire exclusion was a function of site productivity. Species assemblages in the lowest and highest productivity sites were the most stable over the century following fire exclusion. Frequent low severity fires maintained the stocking of forests in moderate productivity sites below their biological potential, conferring a degree of resistance to drought, insect outbreaks, and high-severity fire prior to fire exclusion. Current forests located on moderate productivity sites are now the most vulnerable to drought and future disturbance. Aggressive action to restore historical species composition, stocking and fire component of these forests may return resilience to this system in the face of projected changes to fire and climate dynamics.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Natural Resources
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.