• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using the Xenopus Model to Elucidate the Functional Roles of Leiomodin3 and Tropomodulin4 (Tmod4) During Skeletal Muscle Development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13110_sip1_m.pdf
    Size:
    7.460Mb
    Format:
    PDF
    Download
    Author
    Nworu, Chinedu Uzoma
    Issue Date
    2013
    Keywords
    sarcomere
    skeletal muscle development
    thin filament regulation
    Tmod
    Xenopus
    Cell Biology & Anatomy
    Lmod
    Advisor
    Gregorio, Carol C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Having an in vivo model of development that develops quickly and efficiently is important for investigators to elucidate the critical steps, components and signaling pathways involved in building a myofibril; hence a compliant in vivo model would provide a pivotal foundation for deciphering muscle disease mechanisms as well as the development of myopathy-related therapeutics. Here, we take advantage of a relatively quick, cost effective, and molecularly pliable developmental model system in the Xenopus laevis (frog) embryo and establish it as an in vivo model to study the roles of sarcomeric proteins during de novo myofibrillogenesis.Using the Xenopus model, we elucidated the functional roles of Leiomodin3 (Lmod3) and Tropomodulin 4 (Tmod4) during de novo skeletal myofibrillogenesis. Tmods have been demonstrated to contribute to thin filament length uniformity by regulating both elongation and depolymerization of actin-thin filaments' pointed-ends. Lmods, which are structurally related to Tmod proteins also localize to actin filament pointed-ends. In situ hybridization studies demonstrated that of their respective families, only tmod4 and lmod3 transcripts were expressed at high levels in skeletal muscle from the earliest stages of development. When reducing their protein levels via morpholino (MO) treatment, thin filament regulation and sarcomere assembly were compromised. Surprisingly, alternate rescues (i.e., lmod3 mRNA co-injected with Tmod4 MO and vice versa) partially restored myofibril structure and actin-thin filament organization. Thus, our results not only indicate that both Tmod4 and Lmod3 are critical for myofibrillogenesis during Xenopus skeletal muscle development, but also revealed that they may share redundant functions during skeletal muscle thin filament assembly.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cell Biology & Anatomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.