• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Protein Adduct Formation by Reactive Electrophiles: Identifying Mechanistic Links with Benzene-Induced Hematotoxicity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13141_sip1_m.pdf
    Size:
    15.24Mb
    Format:
    PDF
    Download
    Author
    Kuhlman, Christopher Lee
    Issue Date
    2013
    Keywords
    Benzene
    Bone Marrow
    Glutathione
    Hydroquinone
    Topoisomerase
    Pharmacology & Toxicology
    4HNE
    Advisor
    Lau, Serrine S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The modification of proteins by xenobiotic and endogenous electrophilic species produced in cells undergoing oxidative stress contributes to cellular toxicity and disease processes. Many xenobiotics are themselves reactive electrophiles; however non-reactive compounds may become reactive towards proteins and DNA following metabolism. Identifying actual sites of adduction on target proteins is critical for determining the structural and functional consequences associated with the modification. 1,4-benzoquinone (BQ) is a reactive quinone and environmental toxicant, formed from oxidative metabolism of benzene, an aromatic hydrocarbon found in gasoline and other fuels. Although environmental and occupational exposure to benzene is associated with the development of aplastic anemia and leukemia, the mechanism of toxicity remains elusive. Due to the electrophilic nature of BQ, it reacts with glutathione to form quinol-thioether (QT) conjugates that retain the ability to redox cycle between the reduced (HQ) and oxidized (BQ) forms. BQ and its QT metabolites are reactive, and can produce cellular necrosis through oxidative stress and protein modification. One further consequence of oxidative stress is the elevation of cellular membrane lipid peroxidation, resulting in the formation of reactive lipid-aldehydes such as 4-hydroxynonenal (4HNE). Adduction of critical amino acid residues in target bone marrow proteins by 4HNE and QTs following exposure to benzene could contribute to its hematotoxic effects. This dissertation builds upon the foundation of proteins targeted by electrophilic adduction by outlining techniques to pinpoint the specific amino acids targeted and furthermore predict the functional releavance of adduction. For the first time, protein targets of reactive endogenous lipid aldehydes are reported in the bone marrow of chemically treated rats. Furthermore, novel sites of adduction by aldehydes and benzene-glutathione conjugates are reported within functional regions of topoisomerase II. Inhibition of bone marrow DNA topoisomerase II by benzene metabolites is implicated as a potential mechanism of benzene-induced hematotoxicity and acute-myeloid leukemia. The strong inhibitory effect of these compounds on topoisomerase II activity suggests that their presence in the bone marrow may play a role in benzene-induced myelotoxicity.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.