• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Functional and Evolutionary Analysis of Cation/Proton Antiporter-1 Genes in Brassicaceae Adaptation to Salinity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13167_sip1_m.pdf
    Size:
    5.542Mb
    Format:
    PDF
    Download
    Author
    Jarvis, David
    Issue Date
    2013
    Keywords
    CPA1
    Eutrema salsugineum
    Salt tolerance
    SOS1
    Plant Science
    Brassicaceae
    Advisor
    Schumaker, Karen
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The accumulation of salts in soil is an important agricultural problem that limits crop productivity. Salts containing sodium (Na⁺) are particularly problematic, as cytosolic Na⁺ can interfere with cellular metabolism and lead to cell death. Maintaining low levels of cytosolic Na⁺, therefore, is critical for plant survival during growth in salt. Mechanisms to regulate Na⁺ accumulation in plant cells include extrusion of Na⁺ from the cell and sequestration of Na⁺ into intracellular compartments. Both of these processes are controlled in part through the action of Na⁺/H⁺ exchangers belonging to the Cation/Proton Antiporter-1 (CPA1) gene family. Genes belonging to this family have been identified in both salt-sensitive and salt-tolerant species, suggesting that salt-tolerant species may have evolved salt tolerance through modification of these existing pathways. The research presented here has focused on understanding how salt tolerance has evolved in Brassicaceae species, and particularly on the role that CPA1 genes have played in the adaptation to salinity of Eutrema salsugineum. Specific projects have sought to understand 1) how copy number variation and changes in coding sequences of CPA1 genes contribute to salt tolerance in E. salsugineum and its salt-tolerant relative Schrenkiella parvula, 2) whether functional or regulatory changes in Salt Overly Sensitive 1 (SOS1) from E. salsugineum (EsSOS1) contribute to its enhanced salt tolerance, and 3) whether accessions of Arabidopsis thaliana differ significantly in their response to salt stress.The results indicate that EsSOS1 and SOS1 from S. parvula (SpSOS1) both confer greater salt tolerance in yeast than SOS1 from A. thaliana (AtSOS1) when activated by the complex of the SOS2 kinase and SOS3 calcium-binding protein, whereas only EsSOS1 confers enhanced salt tolerance in the absence of activation. When expressed in A. thaliana, EsSOS1 also confers greater salt tolerance than AtSOS1 through regulatory changes that likely involve differences in expression pattern. Together, the results presented here suggest that mechanisms regulating cellular Na⁺ accumulation that exist in salt-sensitive crop species could be altered to enhance growth in salty soils. In addition, the 19 A. thaliana accessions used to create the MAGIC population were shown to differ significantly in their response to salt stress.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Plant Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.