• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Effect of Pressure on Cathode Performance in the Lithium Sulfur Battery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13117_sip1_m.pdf
    Size:
    4.442Mb
    Format:
    PDF
    Download
    Author
    Campbell, Christopher
    Issue Date
    2013
    Keywords
    Cathode
    Energy storage
    Lithium
    specific energy
    Sulfur
    Materials Science & Engineering
    Batteries
    Advisor
    Raghavan, Srini
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 16-Jun-2014
    Abstract
    This study was undertaken to understand the effect of applied pressure on the performance of the lithium sulfur cathode. Compressible carbon based cathodes and novel nickel based cathodes were fabricated. For each cathode, pore volume and void volume were quantified and void fraction was calculated, compression under 0 to 2MPa was measured, and lithium-sulfur cells were assembled and cycled at pressures between 0 and 1MPa. The cathodes studied had void fractions in the range of 0.45 to 0.90. Specific discharge capacities between 200 and 1100 mAh/g under 1MPa were observed in carbon-based cathodes. Nickel-based cathodes showed increased specific discharge capacity of up to 1300 mAh/g, with no degradation of performance under pressure. The high correlation of specific discharge capacity and void fraction, in conjunction with previous work, strongly suggest that the performance of lithium-sulfur cathodes is highly dependent on properties that influence ionic mass transport in the cathode.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.