• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fate and Toxicity of Engineered Inorganic Nanoparticles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_13204_sip1_m.pdf
    Size:
    16.03Mb
    Format:
    PDF
    Download
    Author
    Otero-González, Lila
    Issue Date
    2014
    Keywords
    Environmental Engineering
    Advisor
    Sierra-Álvarez, María Reyes
    Field, James A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Engineered nanomaterials are increasingly used in a variety of industrial processes and consumer products. Numerous studies have reported toxicity of different NPs during the last years. Thus, there are growing concerns about the potential impacts to the health and environment of engineered nanoparticles (NPs). However, some methodological problems complicate the interpretation of nanotoxicity studies. On the one hand, some NPs have shown to interfere with classical toxicity assays based on colorimetric or fluorescent measurements. On the other hand, most NPs tend to aggregate in media used in toxicity tests, which complicates the interpretation of the toxicity results. The first objective of this dissertation was to evaluate a novel impedance-based and label-free real time cell analyzer (RTCA) as a high throughput method for screening the cytotoxicity of nanoparticles and to validate the RTCA results using a conventional cytotoxicity test (MTT). Several inorganic NPs were tested for potential cytotoxicity to human bronchial epithelial cells (16HBE14o-). In general, there was a good correlation in cytotoxicity measurements between the two methods. Moreover, none of the NPs tested showed interference with the impedance measurements performed by the RTCA system. The results demonstrate the potential and validity of the impedance-based RTCA technique to rapidly screen for NP toxicity. The second objective of this dissertation was to assess the toxicity of different inorganic NPs to the eukaryotic cell model Saccharomyces cerevisiae, and to test the influence of NP aggregation state in their toxicity. Nanotoxicity was assessed by monitoring oxygen consumption in batch cultures and by analysis of cell membrane integrity. Mn₂O₃ NPs showed the highest inhibition of O₂ consumption and cell membrane damage, while the other NPs caused low or no toxicity to the yeast. Most NPs showed high tendency to aggregate in the assay medium, so a non-toxic dispersant was used to improve NP stability. In contrast to aggregated CeO₂ NPs, dispersed CeO₂ NPs showed toxicity to the yeast. However, dispersant supplementation decreased the inhibition caused by Mn₂O₃ NPs at low concentrations, which could indicate that dispersant association with the particles may have an impact on the interaction between the NPs and the cells. The proven toxicity of some NPs raises concerns about their environmental fate. Municipal and industrial wastewaters are considered primary sources of NPs to the environment. However, information on the behavior and impact of NPs on wastewater treatment processes is very limited. A third objective of this dissertation was to evaluate the fate and long-term effect of ZnO and CuO NPs during wastewater treatment in high-rate anaerobic bioreactors. Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were fed with synthetic wastewater containing NPs for extended periods of time (>90 d). Extensive removal (62-82%) of ZnO and CuO NPs was observed during wastewater treatment in the UASB reactors. Scanning electron microscopy and chemical analysis confirmed that NPs were associated with the anaerobic sludge. While short-term exposure to low levels of ZnO and CuO NPs only caused minor inhibition to methanogenesis, extended exposure to NPs accumulated in the sludge bed led to a gradual and partial inhibitory response in the reactors. The inhibitory effect was also evident in the decline in the acetoclastic methanogenic activity of the biomass.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.